£(i,3) = f(xi,yj)
N —1
P(i,j) = I f£(i,1)M.
1=1 3 _
N > i=1...N, j=1...N (25.20)
.. vk
Q(i,j) = I f(k,J)Mi
k=1
N N
R(i,j) = £ & f(k,l)M‘fﬁ“J
k=1 1=1 .

"For x < Xy X > xN, y<yjory?> Yy we extrapolate by using respec-

<y S S. ., S

tively SI,J N-1,5 Si,1

i, N-1°

For one particular mesh the moments M? and ﬁ% of the cardinal splines
have to be computed only once. The three sets of quantities P, Q, R
have to be calculated once for each function f to be interpolated. (In
our calculations we have six such functions: the dimensionless force
and torque components). To any point (x,y) belongs a rectangle charac-
terized by the numbers i and j, and the eight quantities Ai’ Bi’ Ci’
Di’ Aj’ Bj’ Cj’ Dj can be computed for that point. Then S(x,y) as
given by (25.19) yields the interpolated value for the function f at
(x,y).
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CHAPTER VI

WIND TUNNEL EXPERIMENTS.

26 Boomerang arms in uniform straight flow.

The main part of this chapter is concerned with experiments on rotating
boomerangs. This section, however, deals with a preliminary experiment
in which 1lift and drag coefficients of boomérang armé in a uniform,
straight air flow were measured. Boomerang arms, i.e. the wings forming
part of a boomerang, in free flight operate at Reynolds numbers of the
order of 105 or less. In this region the wing charactéristics may seri-
ously deviate from those at the higher Reynolds numbers associated with

ordinary aircraft (see e.g. [Schmitz, 1957], [Muesmann, 1959], [Kraemer,
1961a]).

To investigate this matter with respect to our boomerang arms measure-
ments were carried out with a small wind tunnel at the Twente University
of Technology. Its wind speed could be varied between O and 30 m/s.
(Degree of turbulence unknown.) The measuring cross section was square,
having sides of 45.7 cm (18"). Lift and drag of wings were measured by
means of a three-component spring balance mounted in one side wall of
the tunnel. One end of the wing was attached to the spring balance in
such a way that the wing's spanwise direction was horizontal, perpen-
dicular to the airflow and halfway between the tunnel's bottom and
ceiling. Four wings were made each of which occupied the full tunnel
width, so that a two-dimensional flow (expectedly) would result. In
addition six boomerang arms were cut off from actual boomerangs (which

were known to fly well), and used in the experiment.

Here only part of the data shall be presented, but enough to provide a
fairly representative picture of the lift and drag of boomerang arms in
uniform straight flow at Re a54x104 to 105. It should be emphasized that
the measurements were not of high precision. More extensive and accurate
information (but not on hand-made boomerang arms) can be found in

[Lippisch, 1951], [Schmitz, 1957, 1954], [Muesmann, 1959], [Kraemer,
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1961a). The data presented here are taken from 24:(out of 64) measuring

series, and concern three of the six boomerang arms and all four "two-

dimensional” wings. Their cross sections are shown in fig. 26.1.

5 cm

&

dural airfoil
dural ruler

lignostone I

lignostone II
B-arm WU
B-arm R

B-arm Fé

fig. 26.1. Cross sections of the wings used.

(te= turbulence wire, ‘. rounding off, in part of the measurements.)

length chord | thickn.
wing 1 AR c t t/c | remarks

also with

1 dural airfoil 45.4 o | 4,04 0.62 . 154 | turbulence wire

2 dural ruler 45.4 | = |3.97 0.57 | .144

3 lignostone I | 45.4 | « |4.92 0.77 | .157 |3lso with
turbulence wire

4 lignostone II | 45.3 o | 4,88 0.76 .156 | also rounded

5 B-arm WU 28.6 15 |3.86 0.61 .158 | also rounded

16 B-arm R 26.6 12 4.7 0.94 .200
7 B-arm F6 25.6 10 | 4.9 0.72 147
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Table 26.1 lists some of the dimensions of the wings used. Boomerang
arms R and F6 are tapered, and for these the chord and thickness in the

middle are listed. The aspect ratio for the arms is defined as:

2 _
AR,._Z_;_ | . (26.1)
where 1 = spanwise lehgth, s = wing area. The factor 2 is due to the
mirror effect of the tunnel wall. For the four "two-dimensional" wings

we take AR = =, The Reynolds number is defined as:
Re = — - , (26.2)

where' V = air velocity, v = kinematic viscosity of air, c = chordlength
as listed in table 26.1. Theoretically an elliptic spanwise 1ift dis-

tribution would give rise to an induced drag coefficient (see e.g. [von
Mises, 1959]):

c'=c—’2*‘ . (26.3)
D T7AR '
The corresponding parabolic curves are drawn as thin lines infig. 26.3A,
B,C. Figures 26.2A,B,C,D and 26.3A,B,C show experimental polar curves
i.e. CD’ Ct graphs. The numbers in the graphs denote the angles of inci-
dence, which, in this section, are the angles between the undisturbed
airflow and the flat(test) part of the underside of the considered wing.

Let us consider the experimental data wing for wing.

1. Dural airfoil: fig. 26.2A, fig. 26.3D.

This wing is milled from duraluminium. It has a smooth, airfoil-shaped
profile. Simiiar wings were used in the experiments under water, des-
cribed in §17 and §18. Comparison of the curve 0 Re = 77000 (V= 28.7m/s)
with the curve ® Re = 44000 (V = 16.4 m/s) shows the dependence on Re

of both CL and CD. The favou;able inflpence of a turbulence wire at

Re = 44000 (V = 16.4 m/s) is evident from a comparison between the curves
® without wire and A with ﬁire. The wire consisted of a piece of 0.05 cm
thick cotton string glued to the wing's nose at both ends. Its pos{tion
was influenced by the airflow, especially in the middle of the wing. As
the wire touched the wing's nose it should be considered as a trip wire,

‘see [Kraemer, 1961b]. Finally the curve (QRe = 77000 (V = 28.6 m/s)
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gives data for the reversed profile. Polar curves at Re = 81000 (not
shown) are essentially the same as those at Re = 77000 (0,00 . Fig. 26.3D

shows a remarkable hysteresis phenomenon. C. and CD are plotted as func-

tions of Re (or V) at a constant angle of ikcidence of 5°. For Re > 65000:
CL ~ 1.0 and CD s~ 0.05, whereas for Re < 53000: CL ~ 0.5 and CD ~ 0.1,

. For 53000 < Re < 65000 the lift and drag coefficients depend on whether
the situation was reached from the super- or from the subcritical state

(see further down in this section).

2. Dural ruler: fig. 26.2C.

This wing was milled from duraluminium. It has a trapezium-shaped cross
section with sharp edges, and front-rear symmetry. The trapezium's sharp
angles equal 27.4°. The lift and drag characteristiéSAare not signifi-
cantly different at Re= 79000 (V=29.8m/s): 0 and Re = 44000 (V=16.5m/s): ®.

CD increases suddenly above 7}° angle of incidence, and again above 15°.

3. Lignostone I, fig. 26.2B.

This wing was hand-made from lignostone, a kind of impregnated, com-
pressed beech ply. It has a flat underside. Its upper side was filed
into shape and sanded smooth. The'méasurements were done without and
with turbulence wire. In the latter case the wire consisted of a0.05 cm
(= 0.01 chord) thick piece of cotton string stretched in front of the
wing's leading edge, parallel to it, at a distance of 0.3 cm (= 0.06
chord). The wire was fastened to the wing by means of two screws near
the wing's ends. Without wire there is a slight dependence on Re: com-
pare curve O at Re = 97000 (V = 29.6 m/s) with curve & at Re = 55000

(V = 16.7 m/s). With wire the Re dependence is restricted to angles of
incidence higher than 10°: compare curve A at Re = 96000 (V =29.2 m/s)
with curve A at Re = 54000 (V = 16.3 m/s). The influence of .the turbu-
lence wire is verj pronounced: compare A with O resp. A with 6. Stall
is postponed by the wire from 5° to 124° resp. from 2}° to 10°, and the
maiimum CL is increased from 1.0 to 1.3 resp. from 0.8 to 1.2. At

Re = 96000 strong flutter occurred for angles of incidence near 15°.

The curve ¢)at Re = 55000 (V = 16.7 m/s) gives data for the reversed
profile.
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B.

C.
D.

A ' 1 't I A A A i A A ' .
02 04 06 08 1 2 ) o 3

fig. 26.2. Experimental polar curves for 4 two-dimensional wings.

dural airfoil, O normal Re = 77000, ® normal Re = 44000, A with tur-
bulence wire Re = 44000, (Qreversed Re = 77000.
lignostone I, O normal Re = 97000, ® normal Re = 55000, A with tur-

bulence wire Re = 96000, A with turbulence wire Re = 54000, P reversed
Re = 55000.

dural ruler, ORe = 79000, & Re = 44000.
lignostone II, O normal Re = 98000, ® normal Re
Re = 96000, A rounded Re = 53000, ) reversed Re

53000, A rounded
53000.

Numbers with the experimental points denote the angles of incidence.
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4. Lignostone II, fig. 26.2D.

This wing was hand-made from lignostone. The main difference from
lignostone I is that the underside of lignostone II is not entirely.
flat, but somewhat curved upward near de trailing edge. The flat part
meets the nose of the profile at a right angle with a sharp edge. In
addition measurements were made in which this edge was rounded off. The
effects of this rounding on CL and CD are negligible, except at negative
angles of incidence where it is favourable: compare curve O at Re = 98000
(V = 30.0 m/s) resp. ® at Re = 54000 (V- = 16.7 m/s) with A at Re =96000
(V= 29.4 m/s) resp. A at Re = 53000 (V = 16.4 m/s). The polar curves,
including &at Re = 54000 (V = 16.7 m/s) for the reversed profile,

resemble the corresponding curves (0,8, for lignostone I. The curve

for the reversed profile at Re = 98000 (not shown) is not different
from that at Re = 54000 @ .

5. B-arm WU, fig. 26.3B. _

This wing was cut from a nylon boomerang, which is commercially made
and available in Germany under the name "Comeback" (see fig. 28.1).
Curiously, the profile has a sharp Ieéding edge, a less sharp trailing
edge and a kink in its upper éidé. Its underside is nearly flat. Ac- -
cording to the designer, Mr. W. Urban (personal communicétion, 1970),
these features were not based on aerodynamic considerations, although
he had made boomerang flight trials with various wing profiles.
Rounding off the leading edge and the kink has an adverse effect on CL
and CD for angles of incidence between 24° and 10°: co?pare curve 0 at
vRe = 74000 (V = 29.2 m/s) with curve A for the rounded wing at Re = 76000
(V= 29.4 m/s). This effect is absent at Re = 42000 (not shown). Since
rounding of the kink only has no significant effect either at Re =76000
or at Re = 42000 (not shown), the effect should be mainly due to rounding
of the leading edge. The reversed wing at Re = 76000 (V = 29.4 m/s),
curve (), has roughly the same characteristics as the normal wing, except
for its angle of zero lift being -2}° instead of 0°. The rounding has no
substantial effect on the characteristics of the reversed profile (not
shown). The polar curves of the not-rounded wing at Re = 42000 (not
shown) do not differ much from thbse at Re = 76000 (0,0).
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fig. 26.3. Experimental polar curves for 3 boomerang arms.

A. B-arm R, O normal Re = 92000, (Oreversed Re = 92000.

B.. B-arm WU, O normal Re = 74000, A rounded Re = 76000, ()reversed
Re = 74000. '

C. B-arm F6, O normal Re = 96000, (Qreversed Re = 96000.

Numbers with the experimental points denote the angles of incidence.

D. dural airfoil, C. .and CD vs. Re at constant angle of incidence 5°.

L
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6. B-arm R, fig. 26.3A.

This wing was cut from a hand-made, painted, birch ply boomerang. The
wing has a flat underside and is rather thick. The curve O at Re = 92000
(V. =29.2 m/s) exhibits a hysteresis for angles of incidence between 74°
and 15° The reversed profile ar Re = 92000 (V = 29.2 m/s) is not much

worse: curve(O.

7. B-arm F6, fig. 26.3C.

This wing was cut from a hand-made, painted, mahogany ply booﬁerang.
The wing has a biconvex profile, its underside being less conﬁex than
its upper side. The polar curves at Re = 96000 (V = 29.4 m/s), both for
the normal profile: O and for the reversed profile:(0), show a minimum
CD which is less than that for WU or R. The maximum CL’ however, is not
high: 0.8. Two other boomerang arms having approximately the same profile

were found to have similar polar curves (not shown).

The data represented here show the same peculiarities that are described
more completely in the literature mentioned earlier in this section.
The airflow around a wing appears to have two possible main states: a
supercriticél state at high Re and a subcritical state, with 1ower‘CL
and higherCD, at low Re. The transition from the sub- to the super-
critical state generally occurs at a somewhat higher Reynolds number
than the reverse transition (hysteresis, see e.g. fig. 26.3D). Fig. 26.4

gives.a schematic picture of the flow in both states. It is taken from

-

]

Fig. 26.4. Schematic picture of flow around airfoil (copied from
[Kraemer, 1961al). a) suberitical flow, b) supercritical flow.

a = profile, b = streamlines, ¢ = border stream line, d = dead water
region, e = locally bounded dead water region ("Abloseblase"), f = tur-
bulent boundary layer.
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[Kraemer, 1961] , together with the following clear description of the
boundary layer phenomena:

Die sprunghafte Veranderung der Stromung und der aerodynamischen
Beiwerte beim Durchlaufen der kritischen Reynoldszahl ist ein Grenz-
schichteffekt und hangt mit dem Umschlag der Grenzschicht von der
laminaren in die turbulente Stromungsform zusammen. [... S
Ausgehend vom Staupunkt an der Flugelnase verlauft die Grenzschicht
zunachst in jedem Fall laminar. Ist Re kleiner als die kritische
Reynoldszahl, so bleibt die Grenzschicht auch hinter dem Druckminimum
laminar und 18st sich kurz danach von der Wand ab. Es entsteht ein Tot-—
wassergebiet, das sich bis hinter die Hinterkante erstreckt. Wird die
kritische Reynoldszahl uberschritten, so bildet sich im hinteren Teil
der Fliigel-Saugseite eine turbulente Grenzschicht; die Stromung kann
nun (wenn der Anstellwinkel nicht zu gross ist) bis zur Hinterkante
anliegen. ‘

Der Grenzschichtumschlag von der laminaren in die turbulente Form voll-
zieht sich bei sehr grossen Reynoldszahlen in der Umgebung des Druck-
minimums in der anliegenden Grenzschicht. Ist jedoch die Reynoldszahl
nur wenig grosser als die kritische Reynoldszahl, so schligt die
Stromung erst hinter der laminaren AblGsestelle am Rand einer "Abldse-
blase" um, wie es Bild [26.4] schematisch andeutet. Die Turbulenz ent-
steht dabei in einigem Abstand von der Wand in der Totwassergrenze.
Entscheidend fur das Zustandekommen der uberkritischen Stromung mit
kleinem Widerstand und grossem Auftrieb ist, dass sich die turbulente
Totwassergrenze wieder an die Wand anlegt. Auch im unterkritischen Fall
wird die Totwassergrenze schliesslich turbulent, ohne sich jedochwieder
an die Wand anzulegen. v ,

Die beim Uberschreiten der kritischen Reynoldszahl (trotz des verhalt-
nismassig grossen Reibungsbeiwerts der turbulenten Grenzschicht)
gemessene Widerstandsabnahme ruhrt daher, dass der durch die Ablosung
verursachte Druckwiderstand grosser als der Reibungswiderstand ist.
Auch der Zusatzwiderstand von Rauhigkeiten und S$t3rkdrpern (z. B. "Tur-
bulenzdraht") an oder vor der Nase spielt in der Regel keine Rolle,
wenn dadurch bei vorgegebener kleiner Reynoldszahl noch uberkritische
Stromung (statt unterkritischer) erreicht werden kann. [Kraemer, 1961a,
p. 34]

The data discussed in this section turn out to be interesting with
regard to boomerangs in a rather unexpected way. If the measured lift
and drag charactéristics are used in our winglet model to compute the
forces on rotating boomerangs, the axial (lift) force comes out too
low for ¢ > 10° (see $32). Similar deviations have been observed by
Muesmann [1958] in-the case of axial flow compressors at low Reynolds

numbers.
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§27 The experimental setup.

The following part of this chapter deals with an experiment in which
forces were measured on rotating boomerangs placed in an airflow. Five
different boomerangs were used (see fig. 29.1), the rotational velocity
w, the air speed V and the boomerang's angle of incidence y were varied,
and the six force and torque components - avéraged-over time - acting
on the boomerangs were &etermined. At the outset the plan was to carry
out dynamic measurements; i.e. measurements of the instantaneous forces,
or of the forces as functions of the boomerang's azimuthal angle. But
after some‘consideration»this plan was discarded, as enormous difficul-
ties would have to be overcome, such as the elimination of vibrations.
‘Although the experimentally determined time-averaged forces provide
less information than the instantaneous forces, they still can be used
as a basis for the calculation of boomerang flightpathé, and moreover,
they can be compared to the corresponding quantities computed on basis

of the theory outlined in the preceding chapters.

This section presents a description of the experimental Setup shown in
fig. 27.1. During the measurements a boomerang is.attached to the end
of the rotating shaft by means of a flat, V-shaped piece of duralumin-
ium (see fig. 27.1b). The centre of mass of the boomerang including this
V-piece is situated on the axis of the shaft, and the boomerang's prin-
cipalfaxis'of inertia coincides Qith the axis of rotation. The shaft
consists of a hollow cylindricai aluminiuﬁ tube, and is connected by
means of two ball-bearings to a frame in which the motor drive is
mounted. This frame is constructed from aluminium angle beams arranged
in a coﬁpact tetrahedral form, so as to make it light and rigid. On the
motor shaft a disk with slits is mounted which, together with a light
and a photocel, serves to control the boomerang's rotational speed.
Just as with the experimenté in water, described in §17, this part of

the apparatus is considered as one unit, B.

Unit B is connected to a second frame, C, by means of six elements,
which measure the aerodynamic forces acting on unit B. (The inertial
forces due to vibrations are expected to cancel after averaging with

respect to time.) Frame C too has has a tetrahedral shape, it is
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fig. 27.1. Experimental setup with boomerang L6 attached. a: front view,

airflow from left to right; b: back view, outflow aperture at right.
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constructed from iron angle beams. A hollow cilindrical body of symme-
trical airfoil cross section surrounds the rotating shaft and thus shields
it fromthe airflow. This shielding body is rigidly connected to frame C,
its length is approximately 60 cm, its chord its chord 13.5 cm, its
thickness 3.3 cm.'The whole apparatus is mounted on a steel table and
adjusted so that the axis of rotation is horizontal. Frame C can be
rotated about. a vertical aiis through the boemerang, in order toobtain
different positions with respect to the airflSﬁ and thus to select dif-

ferent values for the angle V.

A right-handed cartesian coordinate system (x,y,z) is defined as follows.
The origin is the bobmerang's.centre of mass. The z-axis coincides with
the axis of rotation, its positive direction is from bearings towards
boomerang. The y-axis is directed vertically upwards. The x-axis is
horizontal and in the direction of the airflow if ¢ = 0. For a right-
handed boomerang the sense of rotation corresponds to the z-direction
as with a right-handed screw; the boomerang is mounted on the shaft

with its more convex side facing in the positive z-direction.

The six measuring elements (and the corresponding amplifier channels,
etc.).are‘numbere&"from 9 through 14. Elements 12, 13 and 14 measure
forces in the x-direction, element 11 meesures in the y-direction, and
elements 9 and 10 measure in the z—dlrectlon. The pos1t10ns of the six
measurlng elements are schematlcally 1nd1cated in fig. 27.3. Each of
these elements con31sts of a measurlng cube and a phosphorbronze wire.
The measuring cubes were des1gned and manufactured in the Shipbuilding
Laboratory of the Delft Un1versxty of Technology, where they are
routinely used. A measurlng cube (see fig. 27.2) 1s milled from one
piece of "armco" steel. Its edges are 5 cm long. It consists of two
parallel square slabs connected.by four parallel, 1 cm wide, 3 cm long,'
thin 1eafle§rings, so that the cube can be slightly deformed under
forces in one direction, while being virtually perfectly stiff with
respect to the five other degrees of freedom.‘Eight'strain,gauges are
glued to the four leaf springs close to their axillas at one slab of
the cube. The electric resistance of the strain gauges varies linearly
with their deformation and hence with the load acting on the cube (within

certain limits). Each measuring cube is fastened to frame C by means of
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fig. 27.2. Measuring element. 1 = steel leafsprings, s =

unit B

w = phosphorbronze wire, a = adjusting screws soldered to the wire. At
right: symbolic representation of this element.
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fig. 27.3. Schematic arrangement of the measuring elements 9 through 14.

Broken lines: frame B, a: rotation axis, V: direction of airflow, num-
bers with arrows: distances in cm. ' '
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four bolts through one slab, and connected to unit B by means of a 3 cm
long phosphorbronze wire fastened to the other slab and directed paral-
lel to the sensitive direction of the cube. The wire's function is to
transmit forces in this direction only, with respect to the other five
degrees of freedom it is comparatively very slack. The wires are heavy
enough to resist buckling under compressive forces. By means of these
wires each measuring cube receives precisely the forces "meant" for it.
The positions and directions of the six wires determine the positions
and directions in which the forces are transmitted from unit B to frame
C. It should be remarked that the actual set-up deviates somewhat from
this general description. The vertical wire of element 11 is about 13 cm
long, but it can only buckle if the upward forces in y-direction would
exceed the weight of unit B, which is not the case during the experi-
ments. The weight of unit B (almost 5.4 kg) acts fuily on element 11
and, because the centre of gravity of unit B is not situated exactly
underneath the wire of élement 11, also loads the elements 9 and 10.
Cube 12 is attached to cube 9 rather than to frame C directly. There-
fore the wires of both elements 9 and 12 are mounted between cube 12

and unit B. The same situation obtains for the elements 10 and 13.

One of the wind tunnels of the Laboratory of Aero- and Hydfodynamics

of the Delft University of Technology was used with open measuring
section. This wind tunnel has a very low degree of turbulence: less
than 0.1%7. The wind speed can be varied between 0 and 50 m/s. The hori-
zontal airstream as it leaves the outflow aperture of the tunnel has a
rectangular cross section, it is 70 cm hiéh and 90 cm wide. The centre
of the boomerang was situated 68.5 cm downstream of the outflow aperture.
The boomerang's centre (the end of the rotating shaft) reached towithin
8 cm of the centre line of the airflow, and was situated nearly 0.5 cm
higher than this centre line. The position of the measuring apparatus
with respect to the wind tunnel allowed a maximum value ¥ = 45°. During
the measurements the boomerang must be situated in the middle of the
airflow, but the rest of the apparatus should disturb the flow as little
as possible. In particular parts of unit B other than the boomerang it-
self should not be exposed to moving air. Hence the requisite length of

more than 60 cm for the (shielded) shaft.
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Each of the measuring channels, numbered from 9 through 14, consists of
a measuring element, an amplifier, an integrator and a power supply.
The channels were operated at a frequency oflOOOHz.zThe signals from
the strain gauges (in bridge connection) in the cubes were integrated
over one méasuring run of about 50 seconds and read out digitally. The
six amplifiers can be used at the scale factors, 1, 2, 5 and 10. The
gain 1is inversely proportional to these numbers.. The choice of the
scale factors was determined by the maximum amplitudes of the often
strongly oscillating signals. For instance, if a signal would be too
great for an amplifier to perform linearly at scale factor 1 or 2, scale
factor 5 or 10 would be selected. Two of the measuring cubes, 9 and 10,
can be used for loads up to 20 kgf., the other four (11 through 14) con-
tain thinner. leaf springs, are twice as sensitive and can be used for

loads up to 10 kgf. Table 27.1 lists the approximate characteristics of

channel nr. 9, 10 11, 12, 13, 14
max. load ~ 20 kgf ~ 10 kgf

1 ust 8 8.4 gf | ~ 4.2 gf

1 ust s 27 0 Mc s 27 Mc

1 gf ~ 3.2 Mc & 6.4 Mc.

table 27.1. Approximate characteristics of the 6 channels.

the channels 9 through l4. Here ust denotes microstrain and Mc denotes
an intermediate unit: the integrated digital output of a channel after
50 sec., multiplied by the scale factor used. The whole apparatus was
calibrated (see §28) in order to convert the 6 Mc values to the forces
Fx, Fy’ Fz in gf and the torques Tx, Ty; Tz in gf . 10 cm. (Tbelsse here
of 10 cm as a "unit of length" makes the numerical values for the torques

have the same order of magnitude as those for the forces.)

If the phosphorbronze wires would be ideally adjusted, the frames per-
fectly stiff, etc., the geometry indicated in fig. 27.3 would allow one

to deduce the following matrix, which would characterize the measuring

apparatus:
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element 9 10 11 12 13 14
Fx 0 0 0 + 1 + 1 + 1
Fy 0 0 + 1 0 0 0
Fz + 1 + 1 0 0 0
Tx +1.28 -1.28 + 6.27 0 0 0
Ty 0 0 0 - 6.65 - 6.65 - 9.48
T, 0 0 ] - 1.24 + 1.24 0

tabel 27.2. Ideal matrix to calculate Fx’ F, Fz (gf) and Tx’
Ty, Tz (gf . 10 cm) from the forces (gf) transmitted by the
measuring elements 9 through 14.

The (necessary) length of the shaft (see fig. 27.3) is reflected in the
4 large entries in table 27.2. This inevitably limits the accuracy of
the components Tx and Ty' Table 27.2 may be compared with table 28.2,

obtained by actual calibration of the apparatus.

The driving servo-motor is of the type Axem-Servalco F9M4. Its speed 1is
reduced by a timing belt transmission in the ratio 3:1. The motor speed
is controlled and kept constant by means of a circular disk with 240
equidistant slits mounted on the motor shaft, a light and a photocel,

and an electronic feedback system with a digital read out.

The air speed V is determined by means of a pitot-tube and a manometer.

These provide a value for iqu where u is the air density.

During a preliminary test without wind the boomerang's rotational speed
could be increased up to 20 revs/sec.; at this point strong vibrations
of unit B set in. During the actual experiments such vibrations occa-

sionally occurred at lower speeds, e.g. 7 or 10 revs/sec.
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§28 The measurements.

Five boomerangs were used in the experiments, they aré shown in fig.
28.1; Fouf of'thém are left-handed (L1,L4,L6,F18) apd'hand-made from
birch plywbod. The fifth (WU) ié right-banded, commercialii made from
nylon,'énd available in Germany undef:the néme "Comeback" (designer:
Willi Urban). The boomerangs L1, L4 and L6 each contain a tiny light
bulb and two batteries, and iﬁ addition the L4 and L6 contain a piece
of electronics to switch the light on and off twice a second. This
equipment is for use in the field experiments described in Part III,
and is not relevant to the wind tunnel experiments. Table 28.1 lists

some properties of each boomerang.

1.| boomerang oW | e | e | Fi8 wWu o

- - left left | 1left | 1left | right
2.| total weight (g) 191 190 151 151 177
3.| flight mass (g a3 | a2 | o139 135 | 160
4.| mom. inertia (g cm’) 39600 |33800 |22100 |27400 45600
5.| max. radius (cm) 30.7 | 30.2| 25.4| 26.2 30.3
6. a , (cm) 29.8 29.1 24.9 | - 25.8 29.6
7.| thickn./chord = 16-.19 | .13-.19 | .17-.20 | .16-.19 | .16

‘table 28.1. Some properties offthe fiQe boomerangs. See also table 32.1.

Aerbdynamic profile properties of the boomerangs'are unknown (except
for WU, see §26). The quantities listed in rows 1, 2,5 and 6 are directly
relevant for the éxperiments. Here "total weight" refers to the weight
of the boomerang including its aluminium V-piece, "max. radius" denotes
thevmaximum distance from the rotation axis to any material point of the
boomerang, and a denotes the theoretical radius of the boomerang according
to (20.7), which is to be used in the reduction of the experimental
data. Further: "flight mass'" and "mom. inertia'" refer to the mass and
moment of inertia of the boomerang as used in field experiments without
aluminium V-piece. Row 7 lists the minimum and maximum thickness/chord
ratio for each boomerang. Other dimensions (e, .1, ¢,.,c ., see §20) of

the boomerang arms can be found in table 32.1.
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10cm '

fig. 28.1. The five boomerangs used in the experiment, with V-pieces

attached. From top to bottom: L4, Ll,vL6, F18, WU.
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The measurements proceeded as follows. A boomerang was mounted on the

shaft. The apparatus was put in position for one of the following 8

angles of incidence:
¥ = =5°,0°,5°,10°,15°,20°,30°,45° (28.1)

Then a séries,of measurements, called a run; was carried out. Each run
consisted of three kinds of acﬁions:A

1) Zero-level measurements, i.e. measurements withqut aerodynamic forces
acting on the boomerang. All amplifiers were successively set at the
scale factors 1, 2, 5, 10.

-2) True measurements. An air speed was chosen and three successive
measurements of about 50 seconds duration were done at rotational speeds
of 7, 10 and 14 revs/sec. Mostly five different air velocities were
successively chosen. If strdng vibrations occurred the rotational speed
was slightly changed: e.g. 7.5 instead of 7.0 revs/sec. and 10.3 or

10.6 instead of 10.0 revs/sec.

3) Zero-level measurements as described under 1) except for the scale
factors not used in the true measurements under 2).

One complete run thus consists of about 15 true measurements and at
moét 8 zero-lével measurements. Consecutive runs were carried out for

different values of y selected from (28.1).

The integral outputs of channels 9 through 14 resulting from the
measurements 1), 2) and 3) were read out and written down as integer
numbers. Afterwards all outputs were converted to a measuring time of
exactly 50 seconds, and multiplied by the corresponding scale factors.
The zero-level measurements were treated in the same manner. In general,
. the outputs of the measurements 1) before and 3) after the true
measurements were different, due to drift. Therefore the outputs of the
true measurements were corrected by means of linearly interpolated
zéro—level outputs. In this way 6 corrected outputs were obtained: Mc.:

J =9,...,14, for each true measurement. These were rounded to integral

numbers.

The apparatus was calibrated by exerting known forces and torques on

the end of the shaft, which in this case did not rotate. The known
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forces and torques were produced by one or two weights hanging from
pieces of thin string, the other ends of which were fastened either
diréctly to the end of the shaft (force) or to excentric metal bars
attached to the shaft (force and/or torque). Where necessary, smooth
running pulleys were used to change the directions of the forces. For
each particular arrangement of sfrings and pulleys the weights were
varied and a run as described above, but without wind and without
rotation, was carried out. The outputs of the calibration measurements

too were reduced to the numbers Mcj.
Let us denote the force and torque components as follows:
F,=F , F,=F_, F3=Fz, F,=T , F. =T , F =Tz. (28.2)

The relation between the six outputs Mcj, j =9,...,14 and the six force
- components Fi’ i=1,...,6 is described by:
14

F.= I A..Mc., i=1,...,6 - (28.3)
=q J1 3] :

1 jg

The coefficiepts Aji are obtained from the calibration. Under the
assumption that the measuring system is linear, six measurements would
suffice to determine the matrix A from (28.3). Actually 50 calibration
measuremenis in 12 runs were carried out, and the matrix elements Aji
were determined by a least squares method. They are listed intable 28.2,
which indicates how Fx’ Fy’ Fz in gf and Tx’ T&, Tz in gf . 10 cm can be

calculated if the Mcj, j=9,...,14 are given.

channel 9 10 11 12 : 13 14
F 1] - .0077 - .OOQ7 - .0031 + ,1528 + .1529 + .1633
Fy 2 | - .0001 - .0082 + .1677 - .0033 - .0013 <= .0010
F, 3| +.3152 + .3160 - .0054 + .0026 + .0041 + .0059
T, 4 | + .3937 - .4544 +1.0360 - .0163 + .0005 + .0071
Ty 5| + .0455 + .0124 + .0155 -1.0130 -1.0071 -1.5534
Tz 6 | + .0096 - .0030 + .0014 + .1923 + .1937 + .0015

table 28.2. Calibration matrix A.. of measuring apparatus, to cal-

culate F,, F , F_ (gf) and T_, TJ} T (gf .10 cm) from the corrected
X . _2Z , X y z
outputs-Mcj, 3 =9,...,14. '
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This calibration matrix may be compared with the ideal matrix in table
27.2, after multiplying theventries under 9 and 10 by 3.2 and the en-
tries under 11 through 14 by 6.4, according to table 27.1. The under-
lined entries in table 28.2 correspond to the non-zero elements in
table 27.2. As regards the estimated errors in the numbers AJ see §29,
particularly table 29.1.

Together 42 runs have been carried out, containing 640 usable measure-
ménts; these are listed in table 28.3. The symbols 0, X and XX are
related to the zero-level measurements. XX signifies that zero-level
measurements were carried out fully as described above under 1) and 3),
X that they were carried out for scale factor | only, and 0 that the
zero-levels at scale factor | were determined in a less prec1se way
(see [Hess, '1972]).

L4 L6 LI F18 WU
left left left left | right
" o | 0 x | x x| x XX
-5° 15 18* 19* 19 0
0° 15 20* 17 18 177
5° 16 17 19% | 15 16 | 18 13
10° 15 20 17 15 20* 16*
15° 16 18 15 15 18"
20° 14 13 14 15 10
30° 9 14 12 13 12"
45 ° 10 12 12 13 10
total | 110 | 132 36 | 119 16 | 131 | 96

table 28.3. Listing of the numbers of measurements
in 42 runs. *: including 3 measurements at V = 0,

+: including 3 measurements with left-handed spin.

The maximum (averaged) axial forces Fz occurring during the measure-
ments for the five boomerangs were: Ll:w~1.7 kgf, L4:m1.4 kgf,
L6: ~ 1.6 kgf, FI8:m1.3 kgf, WU:m1.2 kgf.
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$29 Error analysis.

It is rather difficult to make reliable estimates concerning the various
types of errors contributing to the uncertainties in the final results.
But it is worthwhile to make at least a sensible guess. The errors can
be considered to result from deviations of the actual situation from an
videal situation which is supposed to be measured. In our case the ideal
situation can be characterized as follows:

1) The boomerang is a rigid body. It rotates at a known, constant angu-
lar velocity about its principal axis of inertia throdgh its centre of
mass. It does not move otherwise.

2) The boomerang is placed in a uniform, unbounded airflow with a known,
constant velocity. The airflow is not disturbed by objects other than
the boomerang itself.

3) Six force and torque components acting on the boomerang, averaged
with respect to time, are measured.

Let us now consider the various kinds of errors affecting the measure-

ments.

a) Calibration errors.

The elements Aji of the matrix characterizing the measuring apparatus,
as listed in table 28.2, inevitably contain errors which cause systematic
deviations in the experimentally determined force components. Sources
of these efrors are: uncertainties dp in the point of application of
the known forces, i.e. in the fastening of the strings; uncertainties.
dd in the direction of the known forces, i.e. in the.direction of the
strings; variations da in the gain of the amplifiers. Realistic

estimates for these errors are:
dp = 0.1 cm, dd = 0.0] radian, da = 0.5%. (29.1)

Errors in the magnitude of the exerted forces (weights) are negligible.
By taking iqto account. the geometry of the calibration measurements,
and supposing that the errors combine in the most unfavourable way, we
obtain the calibration error matrix DAji (see table 29.1) for the cali-
bration matrix Aji given in table 28.2. The calibration errors lead to.

errors lei in the force components Fi’ see (28.2) and (28.3), according
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to:

14 : :

dF; = I DAjiIMch, i=1,...,6. (29.2)
_ 3=9 :

9 ' 10 3] 12 13 14

.0054 - .0056 - .0070 . .0060 .0059  .0087
.0055  .0056 .0062 .0077 .0076 .0095
.0017 .0017 .0017 .0025 .0025 .0017
.0076 .0079 .0123 .0123 .0121  .0157
.0077 .0079 .0106 .0138 .0136 .0173
.0046  .0048 .0122 .0138 .0136 .0173

o n &~ W N

table 29.1. Calibration error matrix DA.i for cali-

bration matrix Aji given in table 28.2.

Let us now consider the errors in the measurements proper:

'b) Geometrical errors.

A boomerang was normally attached to the shaft only once. Hence an uncer-
tainty (dp =~ 0.1 cm) in the boomerang's position and uncertainties

(dd =~ 0.01 rad.) ih,the boomerang's orientation with respect to the axis
‘of rotation would lead to (small) systematic errors in the results. Un-
certainties (dd s~ 0,01 rad.) in the angle_y, which is set once before

each measuring series, also lead to small errors.

c¢) Errors in V, w and time.

Errors in the rotational velocity w are negligible (< 0.1%Z). Relative
variations in space and time of the air velocity V are limited to about
0.5Z. The finite extent of the air étream may cause small errors. Three
of the five boomerangs have a diameter of about 60 cm, whereas the height
of the air stream is only 70 cm. By means of a pitot-tube the whole cross
section of the airflow just a little upstream from the boomerang's po-
sition (with the boomerang absent) was scanned. It turned out that the
flow was homogeneous to within better than 17 for the whole region in

which the wing tips of the boomerang move.
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. . 2
As the pitot-tube and manometer provide a value for }uV“ rather than
for V itself, uncertainties Ap in the air density p lead to errors in

V and the advance ratio U:

AU _ AV Au (29.2)
M

The "o0ld" dimensionless force components (see §23) are not affected by

these, but our "new" dimensionless components are; we have:

AF AT A

Ix_ ... =—lz_— (29.4)
F T M-

1x 1z

The density of the air was not regularly measured during the experiments,

but good estimates are:

W= 1.20 kg/m>, 124 < 2z. (29.5)

The variations in p have a time scale of at least hours, hence they would

cause small systematic errors of varying magnitude.

Errors in the time measurements are negligible. However, the signals
are not integrated over an integral number of revolutions. A measuring
time of 50 seconds corresponds to.350, 500 or 700 revolutions at 7, 10
or 14 revs/sec. The oscillating signals often had amplitudes surpassing
their average values, hence a part of a period of revolution might con-
tribute out of proportion to the outputs, but this should not be more
than about 17 of the total output. Such errors could have been avoided

by integrating over a fixed integral number of revolutions.

d. Errors due to presence of apparatus. v

The difference in the position'of the boomerang's centre of mass with
and without aluminium V-piece is about 0.2 cm. During the experiments,
therefore, the axis of rotation does not pass exactly through the boom~

erang's own centre of mass. This shift should have only a very small

effect on the aerodynamic forces.

As all of the forces acting on unit B are measured rather than those
acting on the boomerang only, systematic errors may result. For this

reason the rotating shaft was shielded. But inevitably some aerodynamic
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forces act on the moving parts of unit B: axle, gearing belts and.wheels,
disk with slits; and because of motion of the air, also on the rest of
unit B. A few measurements without boomerang ‘showed that the influence
of these forces is small. The air flow around the boomerang is influ—
enced by the presence of the apparatus, in partlcular the streamllned
pipe sh1e1d1ng the shaft and also the V-piece. This may cause 1nev1table,‘
systematlc errors of perhaps considerable magnltude. But it 1sd1ff1cu1t

to make a reliable estimate for these.

e) Deformation of the boomerang.

During the measurements the boomerang is kept in position by an attach-
ment at its "elbow" close to its centre of mass. Under the influence of
aerodynamic and inertial forces the boomerang may deform. Indeed, occa-
51onally during the experiments some deformation could be clearly seen: .
the spinning boomerang suggested to the eye the surface of a conerather
than that of a plane circle. The deviation of the boomerang's arms from
the proper plane could sometimes be as high as 10°, but this was excep-
tional. The magnltude of the deformatlon increases with 1ncrea31ng\land
v. It may vary during the course of one revolutlon. It is difficult to
estimate the systematic errors due to thls cause, but they could very
well be serious. During most of the measurements, however, the deforma-

tion was so small as to be scarcely perceptible.

f) Errors in the corrected outputs Mcj.
The amplification factors of the strain gauge signal amplifiers and in-
tegrators varied somewhat. Regular checking measurements showed that

these variations were always smaller than * 0.75%. We therefore assume

an error

da = 0.57% (29.6)

in each of the 6 outputs Mcj.

The zero-levels of a channel at the beginning and at the end of a run
generally were not the same. In particular channel 11 had a relatively’
strong drift, always positive during the measurements and negative in
between, on the average =~ 27 Mc ~ | ust =~ 4 gf during one run, but

not seldom twice this value. There were indications
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that this drift was not linear in time (as was supposed in order to
calculate the corrected Mcj), but erratic, depending on the load acting
on element ll. As can be seen from table 28.2, this may cause serious
errors in the components Fy and Tx' Rather arbitrarily we assume an
error in the output of each channel equal to half the average drift

during one measuring series (rounded to integral numbers), and take:

channel 9 10 11 12 13 14

zero-level drift error 3 0O 13 1 0 1 Mc units

(29.7)

Another source of errors in the Mcj is due to rounding to the integral
numbers which are read out. This happens once for the zero-level meas-
urements and once for the true méasurementé (and a third time after
multiplication by the scale factor). This causes an error in the Mcj
which is taken to be 1, 2, 5, 10 Mc units, depending on the scale faé—
tor used. This cohcerns the runs with complete zero-level measurements,

denoted by XX (see §28); the errors in the X and O measurements are

taken greater:

scale factor 1 2 5 10
5 XX 1 2 5 10
; |
- X 1 4 10 20 >errors in ‘Mc units (29.8)
g 0 7 9 15 25

Some arguments for this rather arbitrary choice are given in [Hess,
1972].

The possible errors DMcj, j =9,...,14 in the corrected outputs Mcj are
the sums of the errors in (29.6), (29.7) and (29.8). By assuming that
these combine in the most unfavourable way we obtain the resulting
errors dZFi in the force components Fi:

14

d,F, = I |Aji|DMc

{ s i=1,...,6 - (29.9)
i=9

J

It is probable that the errors in the integrated odtpdts are related to

the amplitudes rather than to the measured averages. It is difficult to
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estimate the real errors but it is likely that they increase with in-
creasing amplitudes. Actualiy, the stronger the oscillations, ‘the larger
the scale factors used. So the assumed errors listed in (29.8) mightvbe
relatively reasonable guesses. The fgal errors could not be much more
than twice as high as thosé:in (29.9), since most of the double meas-
urements iepeated'within these limits of better, except sometimes for

channel 11. See table 30.1 for some actual values_Of d Fi'

2

g) Errors of notationm.

During the experiments more than 12000 numbers were written down by
hand (and afterwards put on punched cards). Of course some of these
numbers may be wrong due to human errors. In the few cases in which

such an error (of sign for instance) was obvious, it has been corrected.

Conclusion.

Errors of the kind leading to scattering of the experimental points
around the "true" values are mainly those considered under f). These
may vary considerably for different measurements and for different force
componenﬁs. They may be partly systematic. They are relatively small for
Fz and relatively large for Tx and Ty. These errors may on occasion
reach 100Z in an individual component. The errors considered under a) .
through e) are of a more slowly varying and more systematic nature.
Those under a), b), c) taken together lead to relative errors in F and
T of thé‘order of 5Z. The errors under d) and e) may be important for

part of the measurements, but are difficult to estimate.

If this experiment would be repeated, the accuracy of the results could
easily be improved by: 12 replacing element 11 by one having less zero-
level drift, and 22 choosing somewhat different rotational velocities

in order to reduce vibrations.
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§30 Processing the numerical data.

Each of the 42 runs is treated as described in §28, and for each meas-

, F. ,F. , T. , T , T. . With the
1x ly lz Ix ly’ "1z

left-handed boomerangs (L1,L4,L6,F18) the experimental values of Fx’ Fy’
Qx, Ty (and w too) have been reversed in sign so as to make themconform

urement values are obtained of U, F

to the corresponding quantities for right-handed boomerangs. The 9 left-
handed measurements with the fight—handed boomerang WU (see table 28.3)

are not further considered.

As examples consider the data listed in table 30.1, which contains the

o

, the

second at y = 15°, V is listed in m/s. The numbers between the rows

results of two runs (X) for boomerang L1, the first run at y = 0

represent the errors in the quantities listed directly above, calculated
according to §29 f. Other errors are not listed. Pairs of duplicating
measurements are nrs. 367, 370 and nrs. 368, 371 at v = 0°. The 1arge
discrepancy between the values of F]y and Tlx from measurements 368 and

371 very probably is due to drift of element 11 (see $29).

In the experiment three independent variables enter: y, V and Q. It is
justified (and very convenient) to reduce these to two: P aﬁdIJ(='V/ma),
if the dimensionless force components are independent of the absolute
magnitude of V and w or, in other words, independent of Reynolds number.
Although the experimental data indicate that this is not quite the case,
the uncertainties in the data are such that the dependence on Reynolds
number cannot be assessed, except perhaps for the components Flz and

le. We shall ignore the Re dependence and consider the six dimension-—

less force components as functions of { and U only.

To bring the numerical results into a more simple and useful form, the
data can be smoothed. For each value of y (fixed for one run), the val-
ues of one component can be plotted versus U, and a smooth line can be
drawn from which the experimental points should not deviate too much.
In [Hess, 1972], where Fox’ etc. were plotted vs. Q rather than le,
etc. ys. U (see §23), these smooth lines were parabolas, but now we

use a more sophisticated method. In §25 the use of doubly cubic splines
for interpolation was outlined. We use similar splines to obtain a

smooth least-squares approximation to the experimental data.
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boomerang L1. a: y=0 , b: p=15

nr v w/2m U Plx Fly Flz Tlx le le
3551 6.25| 6.99 |0.477 | +.0044 | -.0010 | +.0224 +.0059 | +.0021 | -.0031
29 16 11 37 73 8
356 | 6.28 | 10.00 | 0.336 | +.0028 | -.0009 |+.0208 +.0037 | +.0014 | -.0027
14 8 11 20 .37 4
357 | 6.30( 14.00 [ 0.240 | +.0020 | -.0009 | +.0186 +.0017 | +.0020 | -.0025
8 4 6 o - 20 2
358 | 9.47| 7.00)0.723 | +.0075 | -.0024. +.0350 |'+.0078 | +.0026 | ~.0042.
30 13 11 31 76 8
359 9.47 | 10.00 [ 0.506 | +.0046 | -.0013 +.0264 | +.0069 | +.0022 | -.0031
' : - 15 8 11 21 38 4
360 [ 9.48( 14.00 | 0.362 | +.0030 | -.0011 | +.0231 +.0045 | +.0017 | -.0025
8 4 6 11 - 20 2
361 112.60| 7.00|0.961 | +.0118 | -.0019 |+.0493 +.0131 | +.0036 | -.0048
31 13 12 32 79 8
362 {12.64 | 10.00 | 0.675 | +.0065 -.0011 | +.0346 +.0107 | +.0038 | -.0035
16 8 11 21 40 4
363 1 12.61 ] 14.00 | 0.481 | +,0041 | -.0012 | +.0267 +.0072 | +.0031 | -.0027
i 8 4 6 11 21 2
364 | 18.84 7.00|1.438 | +.0220 | -.0019 +.0947 | +.0303 | +.0106 | -.0058
35 16 25 43 - 89 9
265 | 18.91 | 10.00 | 1.010 | +.0120 | -.0007 | +.0604 +,0234 | +,0058 | -.0041
17 8 23 26 45 5
366 | 18.86 | 13.99 | 0.720'| +.0071 | -.0016 +.0408 | +.0137 | +.0044 | -.0031
: 9 4 7 11 24 2
367 | 25.03 7.00 {1.910 | +.0352 | -.0037 | +.1616 +.0522 | +.0181 | -.0060
39 17 28 45 100 10
368 | 24.97°10.00 | 1.334 | +.0181 =.0009 | +.0959 | +.0373 | +.0100 | -.0044
20 8 25 27 50 5
370 1 25.12 7.00 | 1.916 | +.0347 | -.0059 +.1651 | +.0510 | +.0171 | -.0057
39 17 28 46 100 10
371 | 25.10 9.99 | 1.34]1 | +.0181 | -,0046 | +.0978 +.0301 | +.0091 | -.0049
19 8 25 28 50° ' 5
372 125.05| 14.01 | 0.955 | +.0114 -.0038 | +.0634 | +.0205 | +.0034 -.0035
10° 4 13 15 27 3

nr \'A w/2n U le Fly Flz Tlx le T]z
409 6.14 7.00 |0.468 | +.0009 |-.0032 +.0689 | +.0115 |+.0042 |-.0013
28 13 13 32 71 8
410 | 6.14 | 10.00 |0.328:|+.0013 |-.0029 +.0498:| +,0060 | +.0033 |-.0011
14 8 12 21 36 4
411 6.13113.99 {0.234 |+.0013 [-.0020 |+.0378 +.0030 |+.0035 |~-.0011
8 4 7 11 19 2
412 9.45 7.00 {0.721 | +.0004 | =-.0041 |+.1183 +.0201 | +.0061 |-.0015
28 16 26 44 72 8
413 9.46 | 10.00 | 0.505 | +.0003 -.0048 [+.0801 [+.0141 |+.0061 |-.0004
14 8 24 27 36 4
414 9.43 | 14.00 |0.360 |+.0013 |-.0037 +.0558 | +.0090 | +.0047 |+.0000
8 4 8 12 20 2
415 112,54 7.00 {0.957 |-.0013 |-.0043 {+.1819 +.0288 | +.0115 |[-.0011
28 16 29 45 72 8
416 [12.50 | 10.28 |0.649 | -.0012 ~.0062 [+.1132 | +.0233 |+.0103 |+.0010
14 8 24 27 35 4
417 {12.52 | 14.00 {0.478 | +.0006 -.0055 [+.0761 | +.0153 | +.0069 +.0009
8- 4 9 13 20 2
418 118.84 | 7.00 [1.438 |-.0126 |~-.0110 |+.3900 +.0578 | +.0353 |+.0050
29 17 60 60 73 8
419 [18.82 | 10.28 (0.978 | -.0068 =.0134 [+.2127 | +.0397 | +.0186 |+.0048
: 14 9 29 30 35 4
420 |18.80 | 14.00 [0.717 |-.0015 -.0102 [+.1338 | +.0292 | +.0114 +.0036
8 5 17 17 20 2
421 [25.03| 7.00 |1.910 |-.0382 | -.0304 +.6925 [ +.0977 | +.0660 |+.0170
32 19 75 70 81 9
422 124.99 1 10.56 | 1.263 | -.0165 | -.0282 |+.3353 +.0468 | +.0320 | +.0091
14 9 35 33 35 4
423 124.87 | 13.99 | 0.949 |-.0044 | -.0171 |+.2088 +.0422 | +.0183 |+.0069
8 5 21 20 21 2

table 30.1. Results of two runs: (X) for
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A two-dimensional mesh (see §25) in (Y,U)-space .is defined by the mesh-

points (wi,Uj), i=1,...,9, j=1,...,7. wi and Uj are chosen as fol-
lows: ‘? '
i 1 2 3 4 5 6 7 8 i 9
: (30.1)
v. | =-5° 0° 5° 10°  15°° 20° 30° 45° 1 90°
1 ]
j 1 2 3 4 5 6 7
(30.2)
uj 0 .25 .50 .75 1.0 1.5 2.0 .

Fig. 30.1 shows the resulting mesh.

U
.’
2.0 7
1.5 6
1.0 5
75 4
.50 '3
25 2
o - () 0 j=l
=00 5 10° B2° 30 45 >y 90
i=1 23 4 5 ¢ 7 8 9

fig. 30.1. Mesh in (y,U)-space.
For any of the runs we have ¢y = wi’ i=1,...,8. (The reason for the

addition of wi = 90° to (30.1) will be explained presently.) The exper-

imental points are thus situated on the lines Y = wi, i=1,...,8in
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(¥,U)-space, but scattered in U-direction. For each run we find a spline
Si (i=1,...,8) belonging to the meshpoints Uj’ j=1,.0.,7 which mini-

mized the expression:

=}

i k. k.12 k |
[fi - si(u )] LA (30.3)

1

"o~

k

Here f stands for any of the six dimensionless force components and the
superscripts k (k = 1,...,ni) denote the measurements in series i. The
weights W? are taken inversely proportional to the errors in the f:
calculated according to §29f. In this way we obtain the values Si"
i=1,...,8, j=1,...,7 of the doubly cubic smoothing spline S, belonging
to the considered component, at the meshpoints. This general procedure
is modified if there are no experimental points in. the neighbourhocd of
one or more meshpoints. In this case such meshpoints are omitted from
the U-mesh, and afterwards the missing values Sij are calculated by
extrapolation (interpolation did not occur). What is meant here by "the
neighbourhood" of a meshpoint in U-direction is shown in fig. 30.2. The
maximum experimental values of U are =~ 2.5 for boomerang F18 and =~ 2 for

the other boomerangs.

0 .5 35 .85 .85 1.25 1.75 @

plzfslels | & | 7
0 25 .50 75 1.0 1.5 2.0 U

fig. 30.2. Neighbourhoods of meshpoints Uj' Meshpoints are indicated by
dots, neighbourhoods are separated by vertical lines halfway the mesh-

points.

In 823 we remarked that, if V cos ¢y = 0, the components le, Fly’ Tlx

and le must vanish because of symmetry, and the components FlZ and T]z

must be independent of y. In order to satisfy the relations (23.4) and
(23.5) for U = 0 we proceed as follows. We take Sil’ i=1,...,8 equal
T

to zero for the components le, F T, . For the components Flz

> ’

and T]z we average the calculatedlzalul: Siif i=1,...,8 (giving each
run i a weight equal to the number of measurements in neighbourhood 1
plus 0.1 x the number of measurements in neighbourhood 2). The resulting
value is taken as S, i=1,...,8, indepéﬁdent of y. In (30.1) ¢9==90°

is added because the experimental data will be used in the computation
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of boomerang flight paths (see Part III), in which values of ¥ close to

90° may occasionally occur. In agreement with (23.6) we take 89 5
bl
1x° Fly’ Tlx’ le'

And, for lack of better, we take 89 3 (Y = 90°) equal to 88 F (p = 45°)

for the components F 1z and T . We now have a complete set of smoothed

i=1,...,7 (Y = 90°) equal to zero for components F

values S. i for each of the six components. at the meshpoints - (w ,UL),
i=1,...,9, j=1,...,7. Values at any other point in (W,U)-space are
provided by the doubly cubic interpolation splines according to §25.
This is just a matter of smooth interpolation, leading to the drawn

curves in the figures of §31.

The theoretical results (based on the theory of the preceding chapters)
with which the experimental data are to be compared in the following
sections, are brought into a similar form. For a given theoretical model
1%° Fly"Flz’ Tlx’ le’ T]z at the
meshpoints (wi,Uj), i=1,...,9, j=2,...,7. It is impossible to apply

our theory if U = 0. Here we taye le, Fly’ Tlx’ le equal to zero in

boomerang, values are computed of F

accordance with (23.4), and for Flz and le we uae a spline extrapola-

tion to find the values Sil’ i=1,...,8, which then are averaged, so

~ that (23.5) is satisfied.

The six sets of values of the dimensionless components at the points
(wi,qj),'i =1,...,9, j = 1,...,7 together characterize a boomerang's
aerodynamic’properties. To such a collection of values:a "boomerang
number" is attached to serve as a labei. The boomerang numbers for the.

five experimental boomerangs are chosen as follows:

Ll : 101
L4 : 104
L6 : 106
F18: 108
WU : 109

The experimental values for these boomerangs are arranged in five tables
at the end of $31. Similar tables can be computed for theoretical boom-

erangs. Such tables are used in Part III as a basis for flight path

calculations.
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§31 The experimental results.

This lengthy section contains 5 tables and 36 graphs showing.experimen-
tal results, and 30 theoretical graphs to compare the experimental ones
with. The graphs have been drawn by an automatic plotter on basis of the:
methods outlined in $30. The lines in the graphs have been dashed rather
than drawn wherever the results are due to extrapolation rather than

measurements.‘To these extrapolated values not muchphysicalsignificance

should be attached.

The graphs and tables contain data on the six dimensionless force and
torque components acting on the boomerangs, as functions of the boom—

erang's angle of incidence Y and the advance ratio U = V/wa. The six

components,. in the order of the graphs,. are:

axial force,

F

1z
le = axial torgque,
‘1'IX = rolling torque,
Fl- = sideward force,

y
le = pitching torque,
_ le = backward force parallel to plane of rotation.

The subscript 1 indicates that the forces and tbrques have been made
dimensionless by dividing them by umzaa and uw2a5 respectively. The

~dimensionless lift F,. and the dimensionless drag FlD are given by:

1L
FlL = Flz cos § - le s;n 1}

(31.1)
FID = le cos P + F]z sin Y

Figures 31.1 through 31.6 show graphs, for boomerang L1, of the six

components as functions of U. They serve as a fairly representative

example to give an impression of the scatter in the experimental data.

The position of each measurement is indicated by a digit i, i = 1,...,8,
o

denoting the angle of incidence wi from (30.1). Thus | means § = -5,

8 means ¥ = 45°, etc.

The measured Flz values scatter relatively little and the le values do

not scatter much either. The components that scatter most are Tlx
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and Fly' The components T]y and F are intermediate as regards scatter.
Part of the scatter for the component F must be due to the dependence
on Reynolds number, since in most clusters of three experimental points’
the lowest point or1g1nates from a measurement at 7 revs/sec., the
middle one from 10 revs/sec. and the highest one from 14 revs/sec. A _
quantitative investigation of this effect could be made by processing -
the data for each of the three rotational velocities sepafately, and

studying the systematic differencés between the resulting graphs. This,

however, has not been done.

Figures 31.7 through 31.36 show graphs of the six components as func-
tions of ¥, for all five experimental boomerangs: L1, L4, L6, F18 and
WU respectively. Each: figure' shows experimental graphs at the left and:
theoretical counterparts at:.theright. They are-made by the: methods outlined: -
in §30. The numbers in"the graphs denote-the U=-values for. each of the
lines: U = Uj’ i=2,...,7, see (30.2). The choice of parameters for the
theoretical boomerangs is discussed in §32. An evaluation of the corres-

pondence and differences between theory and experiment is given in §33.

Finally, tables 31.1 through 31.5 provide a condensed- survey of the ex-—
perimental results for each of the five boomerangs. Values of the six
dimensionless components are listed for thé points in (y,U)-space de-
fined by (30.1) and (30.2) (see fig. 30.1). Values outside the boxes
are based on extrapolation rather than measurements, and have little

physical significance. Entries for § = 90° have been omitted here, for
this see §30. '
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101

-5 0° 5 10° 15° 20° 30°

fig. 31.7. Boomerang L1, component F

195

lz

30° Y 45°

. 101 =exp., 195 =theor.

1z

195

L +-.02¢ .
- -4-.03 -
L --.04} -

1 1 1 1 1 1 ] —l ] i 1 [l 1 [l ] 1 1

-5° 0° S5° 10° 150 20° 3° 45° 50 Q° 50 10° 150 200 0 W 450

fig. 31.8. Boomerang L1, component le. 101 = exp., 195 = theor.
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1 1 1 1 1 1 1 ) ) I 1 L 1 ! 1 1 1 1
-5° 0° 5° 10° 15° 20° 30° L 45° 5¢ Q° 5° 10° 15° 20° 30° v . 45°

fig. 31.9. Boomerang L1, component Tlx' 101 = exp., 195 = theor.

-5 0° 5°° 10° 15° 20° 30° ¥ 45° -5° Q° 5 10° 15° 20° 30° ] 45°

fig. 31.10. Boomerang L1, component F]y' 101 = exp., 195 = theor.
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fig. 31.12. Boomerang L1, component F
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31.13. Boomerang L4, component F

1z

. 104 = exp., 237 = theor.
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fig. 31.14. Boomerang L4, component le. 104 = exp., 237 = theor.

45°
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fig. 31.15. Boomerang L4, component T

10°

15°

20°

U] 45°

1x

. 104 = exp., 237 = theor.

45°

104 Fiy 237
o 4 .04 - ~
/
- / 4.03}F -
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- / /A .02 -
/ -
- / -4 0 -
25 /5 \ == _00é~ ‘%
N /
.’ - | . 1 h
" % --.01
L 4-.02} .
L 4-.03} .
- --.04 |- -4
1 1 1 l 1 A 1 1 1 1 1 1 1 1
-5° 0° S5° 10° 15° 20° ° W 45° 8% (0° 50 10° 150 200 Y
fig. 31.16. Boomerang L4, component F, . 104 = exp., 237 = theor.
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fig. 31.17. Boomerang L4, component le. 104 = exp., 237 = theor.

-5 0° S5° 10° 15° 20° 30° v 45° -5° Q° 5° 10° 15° 20° 30° [ 45°

fig. 31.18. Boomerang L4, component le. 104 = exp., 237 = theor.
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1 A 1 1 ) 1 2 1 1
-5 0° S5° 10° 15° 20° 30° L] 45° -5 Q° 5° 10° 15° 20°

30° L 45°

fig. 31.19. Boomerang L6, component F, . 106 = exp., 241 = theor.
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fig. 31.20. Boomerang L6, component le’ 106 = exp., 241 = theor.
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~5° 0° 5° 10° 15° 20° 30° L 45° -5° Qg° 5° 10° 15° 20° 30° L} 45°

fig. 31.21. Boomerang L6, component Tlx' 106 = exp., 241 = theor.
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1 1 1 1 I 1
15°  20° 30° y 45°

fig. 31.22. Boomerang L6, component Fly' 106 = exp., 241 = theor.
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fig. 31.23. Boomerang L6, component le' 106 = exp., 241 = theor.
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fig. 31.24. Boomerang L6, component F
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fig. 31.25. Boomerang F18, component F
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fig. 31.26. Boomerang F18, component le. 108 = exp., 242 = theor.
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fig. 31.27. Boomerang F18, component Tlx' 108 = exp., 242 = theor.
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fig. 31.28. Boomerang F18, component F
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fig. 31.32. Boomerang WU, component T 2 109 = exp., 239 = theor.
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-5 0° 5° 10° 15° 20° 30° ¥ 45° -5° Q° 5° 10° 15° 20° 30° '} 45°

fig. 31.33. Boomerang WU, component T]x' 109 = exp., 239 = theor.
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fig. 31.34. Boomerang WU, component Fly' 109 = exp., 239 = theor.
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Ut y» =5 +0 +5 +10° +15° +20° +30° +45°
2.00 |-.0508 +.1763 +.3804 +.5758 +.7580 +.9041 |+1.0021 +.9075
1.50 |-.0198 +.1093 +.2218 +.3332 +.4354 +.4772 + .5768 | +.5782
1.00 |+.0003 +.0604 +.1130 +.1659 +.2187 +.2467 + .2855 +.3216
F,, 0.75 [+.0055 +.0399 +.0718 +.1035 +.1358 +.1642 + .1887 +.2205
0.50 [+.0076 +.0265 +.0441 +.0606 +.0788 +.0942 + .1160 +.1369
0.25 |[+.0114 +.0191 +.0267 +.0329 +.0397 +.0466 + .0571 +.0679
0.00 |+.0107 +.0107 +.0107 +.0107 +.0107 +.0107 + .0107 +.0107
U+ > =5° +0° +5° +10° +15°  +20° +30° +45°
2.00 | +.0266 +.0549 +.0861 +.0935 +.1100 +.1125 |+.0330 +.0643
1.50 [+.0172 +.0369 +.0500 +.0577 +.0593 +.0475 -+.0346 | +.0457
. 1.00 |+.0082 +.0212 +.0297 +.0349 +.0398 +.0364 +.0321 +.0296
Tix 0.75 |+.0046 +.0125 +.0189 +.0239 +.0286 +.0301 +.0281 +.0224
0.50 |+.0025 +.0073 +.0101 +.0125 +.0152 +.0170 +.0180 +.0151
0.25 | +.0008 +.0019 +.0028 +.0031 +.0037 +.0044 +.0050 +.0044
0.00 [+.0000 +.0000 +.0000 +.0000 +.0000 +.Q000 +.0000  +.0000
: 7
Uty -5° #0° +5°  +10°  +157 —+20° +30°  +45°
2.00 | +.0027 +.0180 +.0357 +.0490 +.0720 +.0945 | +.0847 +.0663
1.50 | +.0024 +.0125 +.0221 +.0319 +.0412 +.0359 +.0371 | +.0361
1.00 [+.0032 +.0044 +.0102 +.0146 +.0193 +.0162 +.0137 +.0145
T,, 0.75|+.0026 +.0040 +.0065 +.0091 +.0112 +.0120 +.0099 +.0070
Y 0.50 [+.0026 +.0025 +.0042 +.0054 +.0065 +.0069 +.0061 +.0023
0.25 | +.0018 +.0018 +.0023 +.0025 +.0033 +.0039 +.0039 +.0030
0.00 | +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000
U+ yp»  =5° +0° +5° +10° +15°  +20° +30° +45°
2.00 | +.0471 +.0383 +.0153 =-.0171 -.0429 -.0567 |-.0223 -.0166
1.50 | +.0278 +.0223 +.0107 -.0072 -.0196 -.0156 -.0099 | -.0078
1.00 | +.0136 +.0120 +.0071 -.000! =-.0065 -.0074 -.0050 ~-.0031
Fix 0.75[+.0086 +.0077 +.0056 +.0024 =-.0011 =-.0047 -.0046 ~-.0022
0.50 | +.0047 +.0044 +.0034 +.0022 +.0004 =-.0012 -.0031 -.0018
0.25 | +.0019 +.0021 +.0018. +.0017 +.0015 +.0011 +.0003 _~-.0002
0.00 | +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000
U+ y»  =5° +0° +5° +10° +15° +20° +30° +45°
2.00 | +.0001 =-,0056 -.0153 =-.0242 =-.0332 -.0306|-.0044 +.0140
1.50 | +.0007 -.0026 -.0109 -.0173 =-.0207 -.0069 +.0007 | +.0008
1.00 | -.0002 -.0026 -.0073 =-.0124 -.0167 -.0103 -.0008 ~-.0035
F,, 0.75]-.0006 =-.0019 -.0045 =-.0070 -.0082 =-.0094 =-.0030 ~-.0022
Y 0.50 | -.0008 -.0011 -.0028 =-.0040 =-.0052 -.0052 -.0025 +.0001
0.25 [ -.0008 -.0009 -.0013 -.00l6 =-.0021 -.0027 =-.0029 +.0019
0.00 | +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000
U+ ¢ =5° +0° +5° +10° +15° +20° +30° +45°
2.00 | -.0101 -.0058 -.0006 +.0048 +.0200 +.0344| +.0115 +.0282
1.50 | -.0076 =-.0054 =-.0023 +.0017 +.0080 +.0039 +.0035 | +.0110
1.00 | -.0053 -.0039 -.0021 +.0014 +.0059 +.0043 +.0030 +.0033
T,, 0.75|-.0043 -.0035 -.0023 +.0000 +.0024 +.0048 +.0046 +.0030
0.50 | -.0034 =-.0029 -.0020 -.0009 +.0004 +.0018 +.0036 +.0039
0.25|-.0026 -.0025 -.0019 -.0015 =.0010 -.0004 +.0006 +.0016
0.00 | -.0026 =-.0026 -.0026 -.0026 -.0026 =-.0026 =-.0026 ~-.0026
table 31.1. Boomerang L1, experiment_al results: nr. 101.
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U+ p»>  =5° +0° +5° +10° +15° +20° +30° +45°
2.00 | -.0666 +.1451 +.3475 +.5151 +.6981 |+.7823 +.9231 +.9704
1.50 | -.0376 +.0862 +.2006 +.2974 +.3988 +.4888 | +.5473 +.5940
1.00 | +.0073 +.0477 +.1055 +.1525 +.1948 +.2474 +.2758 +.3158
F]z 0.75 | +.0006 +.0320 +.0662 +.0940 +.1220 +.1501 .+.1793 +.2135
0.50 | +.0035 +.0214 +.0396 +.0548 +.0693 +.0825 +.1065 +.1328
0.25 | +.0075 +.0151 +.0229" +.0286 +.0349 +.0409 +.0484 +.0615
0.00 +.0119 +.0119 +.0119 +.0119 +.0119 +.0119 +.0119 +.0119
U+ Y -5° +0° +5° +10° +15° +20° +30° +45°
2.00 | +.0169 +.0434 +.0596 +.0616 +.0634 |+.0110 +.0044 +.0462
1.50 | +.0069 - +.0237 +.0376 +.0441 +.0391 +.0366 | +.0235 +.0306
1.00 | +.0042 +.0138 +.0247 +.0284 +.0278 +.0326 +.0261 +.0199
Tlx 0.75 | +.0020 +.0087 +.0141 +.0199 +.0207 +.0212 +.0211 +.0164
0.50 | +.0007 +.0052 +.0060 +.0110 +.0115 +.0109 +.0127 +.0126
0.25 | -.0002 -+.0014 +.0003 +.0022 +.0029 +.0032 +.0035 +.0026
0.00 { +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000
Us > -5° +0° +5° +10° +15° +20° +30° +45°
2,00 | -.0105 +.0060 +.0235 +.0349 +.0572 | +.0459 +.0543 +.0171
1.50 { -.0039 -.0002 +.0136 +.0185 +.0300 +.0359| +.0305 +.0197
' 1.00 | -.0020 +.0015 +.0069 +.0088 +.0111 +.0186 +.0132 +.0146
T]y 0.75 | -.0025 +.0007 +.0032 +.0041 +.0052 +.0084 +.0071 +.0091
0.50 | -.0013 +.0005 +.0012 +.0019 +.0017 +.0026 +.0028 +.0031
0.25 | -.0006 +.0008 +.0006 +.0012 +.0014 +.0016 +.0016 +.0018
0.00 | +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000
U+ y»  -5° +0° +5° +10° +15° +20° +30° +45°
2.00 { +.0375  +.0353 +.0191 -.0024 -.0219 l-.0262 +.0386 +.0029
1.50 | +.0227 +.0222 +.0112 +.0002 -.0107 -.0166] +.0115 +.0034
1.00 | +.0093 +.0102 +.0070 +.0024 -.0026 -.0076 -.0018 +.0014
le 0.75 | +.0074 +.0065 +.0053 +.0031 -.0001 -.0034 =-.0032 .-.0006
0.50 | +.0045 +.0037 +.0033 +.0025 +.0015 -.000! -.0017 -.0023
0.25 | +.0021 +.0015 +.0018 +.0016 +.0014 ~+.0012 +.0008 +.0001
O.QO +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000
U+ ¢ -5° +0° +5° +10° +15° +20°_ +30° +45°
2.00 { +.0012 -.0001 =-.0019 -.0052 -.0115 l+.0226 -.0047 +.0463
1.50 | +.0003 -.0014 -.0029 -.0046 -.0098 -.0060| +.0009 +.0139
1.00 | +.0004 -.0010 -.0040 -.0058 -.0074 -.0102 +.0017 -.0012
F,y 0.75|-.0005 -.0010 -.0033 -.0037 -.0046 =-.0052 +.0003 -.0022
‘0.50 { -.0009 -.0009 -.0025 =-.0022 -.0027 -.0030 -.0016 -.000S
0.25|-.0009 -.0007 -.0017 -.0013 =-.0015 -.0019 -.0017. -.0019
0.00 | +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 '+.0000 +.0000
" U+ yp»  =5° - +0° +5° +10° +15° +20° +30° +45°
2.00 | -.0084 -.0048 -~-.0044 -.0031 +.0100] -.0070 +.0120 +.0038
1.50 | -.0066 =-.0049 -.0039 -.0028 +.0041 +.0074| +.0077 +.0006
1.00 | -.0036 =-.0035 -.0017 -.0001 +.0026 +.0075 +.0044 +.0010
le ~0.75|-.0033 -.0030 -.0022 -.0010 +.0008 +.0032 +.0031 +.0026
0.50 { -.0027 -.0026 -.0021 -.0013 -.0005 +.0003 +.0019 +.0040
0.25|-.0021 -.0020 -.0029 -.0013 -.0010 -.0006 =-.0001 +.0011}
0.00 -.0021 -.0021 -.002] -.0021 -.0021 -.0021 -.0021 ~-.0021
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table 31.2. Boomerang L4, experimental

results: nr. 104.




U+ p>  =5° +0° +5° +10° +15° +20° +30° +45°
2.00 [-.0612 +.1418 +.3475 +.4934 +,6349 |+.6387 +.9007 +.8439
1.50 | -.0278 +.0868 +.2034 +.3033 +.4002 +.4182 +.5476 | +.5636
1.00 | -.0076 +.0453 +.0987 +.1466 +.1985 +.2303 +.2833 +.3290
F 0.75 [ -.0012 +.0320 +.0623 +.0929 +,1241 +.1505 +.1856 +.2289
12 0,50 [+.0022 +.0212  +.0366 +.0538 +.0726 .+.0881 +.1133. +.1410"
0.25 | +.0048  +.0137 +.0198 +.0273 +.0357 +.0426 +.0558 +.0681
0.00 [ +.0050. +.0050 +.0050 +.0050 +.0050 +.0050 +.0050 +.0050
Ut p> -5 +0° +5° +10° +15° +20° +30° +45°
2.00 | +.0057 +.0270 +.0396 -.0145 =-.0118 |-.1490 -.1016 +.0310
1.50 | +.0002 +.0166 +.0308 +.0397 +.0471 +.0120 +.0021 | +.0293
1.00 | -.0013 +.0076 +.0222 +.0273 +.0354 +.0345 +.0338 +.0239
T,k 0.75]-.0035 +.0009 +.0103 +.0178 +.0208 +.0274 +.0261 +.0197
0.50 | -.0043 =-.0034 +.0037 +.0073 +.0119 +.0156 +.0165 +.0141
0.25|-.0038 -.0053 =-.0030 -.0032 =-.0004 +.0018 +.0035 +.0045
-0.00 | +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000
U+ > =5° +0° +5° +10° +15° +20° +30° +45°
2.00 | -.0169 +.0037 +.0177 +.0247 +.0215 |+.0019 +.0206 +.0744
1.50 | =.0091 +.0010 +.0121 +.0189 +.,0255. +.0131 +.0175]+.0370
1.00 | -.0043 +.0013 +.0081 +.0082 +.0088 +.0103 +.0097 +.0121
T, 0.75 | -.0034 +.0002 +.0048 +.0066 +.0034 +.0052 +.0045 +.0044
¥ 0.50 | -.0025 -.0001 +.0034 +.0039 +.0028 +.0031 +.0008 +.0004
0.25 | -.0010 =-.0002 +.0017 +.0028 +.0023 +.0019 +.0014 +.0023
0.00 | +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000
Uty =5 +0° +5° - +10° +15° +20° +30° +45°
2.00 | +.0418 +.0357 +.0167 +.0014 +.0029 |+.0442 +.0423 +.0033 |
1.50 | +.0248 +.0211 +.0103 =-.0041 -.0141 +.0072 +.0060 | +.0030
1.00 [ +.0121 +.0103 +.0059 +.0008 -.0037 -.0055 =-.0047 +.0014
F _ 0.75[+.0081 +.0068 +.0047 +.0014 =-.0004 -.0036 -.0023 +.0002
0.50 | +.0049 +.0040 +.0030 +.0022 +.0013 -.0005 =-.0011 -.0008
.0.25 | +.0020 +.0017  +.0014 +.0012 +.0015 +.0015 +.0010 =-,0002
0.00 | +.0000 ~ +.0000 * +.0000 +.0000 +.0000 +.0000 +.0000 +.0000
Uv y> -5 +0° +5°  "+10°  +15°  420°  +30°°  +45°
2.00 | +.0003 -.0016 -.0088 -.0183 -.0140 |-.0109 ~-.0103 -.0138
1.50 | -.0003 -.0018 =-.0064 =-.0098 =-.0115 -.0058 -.0008 | =.0057
1.00 | -.0005 =-.0019 -.0027 -.0040 -.0035 -.0017 +.0024 -.0002
Fiy 0.75/-.0014 -.0030 -.0038 -.0044 =-.0033 -.0006 +.0017 +.0015
0.50 | -.0021 =-,0033 =-,0030 -.0033 =-.0032 -.0019 +.0002 +.0019
0.25| -.0018 =-.0026 -.0023 =-.0027 =-.0022 .-.0022 =-.0024 -.0016
0.00 | +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000
Uy p> =5° +0° +5° +10° +15° +20° +30° +45°
2.00 [ -.0069 =-.0040 =-.0025 -.0117 =-.0039 |-.0355 -.0207 +.0169
1.50 | -.0053 =-.0037 -.0021 +.0014 +.0098 =-.0033 +,0007 | +.0066
1.00 | -.0035 =-.0030 =-.0017 +.0002 +.0033 +.0057 +.0058 +.0026
T,, 0.75]-.0030 =-.0027 =-.0017 =-.0001 +.0006 +.0029 +.0034 +.0030
0.50 | -.0026 =-.0024 -.0016 ~-.0007 +.0002 +.0008 +.0021 +.0041
0.25}-.0022 -.0020 -.0016 =-.0012 =-.0008 =-.0004 +.0006 +.0021
0.00 | -.0021 =-.0021 =-.0021 =-.0021 =-.0021 =-.0021 =-.0021 ~-.0021

table 31.3. Boomerang L6, experimental

results: nr. 106.
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1z

U+ Y

2.00
1.50
1.00
0.75
0.50
0.25
0.00

o

-5

o

+0

+5°

+10° +15°

-.0958
-.0472
-.0153
-.0053
+.0006
+.0058

+.0064

+,.1288
+.0790
+.0419
+.0280
+.0185
+.0133
+.0064

+.3593
+.2078
+.1006
+.0622
+.0369
+.0211
+.0064

+.5397 | +.6783

+20°
+.8388

+30°
+.9711

+45°
+1.0891

+.3092 +.3957

+.1524 +.1953"

+.0932 +.1252
+.0536 +.0721
+.0280 +.0358
+.0064 +,0064

+.4906
+.2399
+.1514
+.0873
+,0426
+.0064

+.5863
+.2962
+.1890
+.1129

.+.,0539

+.0064

.6555
.3472
.2377
. 1462

+F 4+ 4

.0064

.0666

1x

LU Y

2.00
1.50
1.00
0.75
0.50
0.25
0.00

L]

=5

o

+0

+5°

+10° +15°

+.0168
+.0069
+.0007
-.0019
-.0012
-.0011
+.0000

+.0301
+.0197
+.0127
+.0076
+.0047
+.0006
+.0000

+.0456
+.0302
+.0213
+.0124
+.0060
-.0004
+.0000

+.0565 | +.0588

+20°
+.0274

+30°

+45°
-.0185.

+.0374 +.0381
+.0315 +.0257
+.0204 +.0205
+.0117 +.0092
+.0008  -.0003
+.0000 +.0000

+.0409
+.0311
+.0184
+.0060
+.0020
+.0000

-.0030
+.0305
+.0195
+.0098
+.0004
+.0000

+.0195
+.0257
+,0188
+.0126
+.0034
+.0000

ly

U+ >

2.00
1.50
1.00
0.75
0.50
0.25
0.00

50

+0°

+5°

+10° +15°

+.0028
+.0017
+.0008
+.0002
+.0009
+.0009
+.0000

+.0179
+.0110

+.0061

+.0037
+.0029
+.0024
+,0000

“+.0394

+.0240
+.0127
+.0079
+.0047
+.0029
+.0000

+.0524 | +.0634

+20°
+.0855

+30°
+.,0537

+45°
+.0471

+.0302 +.0331

+.0164  +.0147

+.0092 +.0094
+.0061 +.0054
+.0032 +.0035
+.0000 +.0000

+.0453

+.0101
+.0053
+.0040
+.0000

+.0400

+.0214

+.0113
+.0049
+.0033
+.0000

+.0336
+.0174
+.0091
+.0039
+.0031
+.0000

1x

U+ >
2.00

1.50-

1.00
0.75
0.50
0.25
0.00

o

=5

o

+0

(]

+5

+10° +15°

+.0212
+.0106
+.0070
+.0038
+.0016
+.0000

+.0359

+.0339 -

+.0198
+.0097
+.0064

+.0035

+.0013

+.0000.

+.0148
+.0097
+.0057
+,0047
+.0031
+.0013

+.0000 -

-.0073 | -.0047

)

+20
-.0190

[-)

+30
+.0441

o

+45
+.0190

-.0025 -.0024
-.0005 -.0012
+.0021 -.0006
+.0019 +.0010
+.0013  +.0012
+.0000 +.0000

-.0096
-.0044
-.0028
-.0003
+.0008
+.0000

+.0065
-.0050
-.0026
-.0010
+.0004
+.0000

+.0103
+.0033
+.0005
-.0014
-.0002
+.0000

ly

U+ >

2.00

. 1.50
1.00
0.75
0.50
0.25
0.00

[

=5

o

+0

)

+5

~+10°  #15°

-.0013
-.0011
-.0011

-.0015
-.0011
+.0000

-.0017 -

~.0066
-.0039

-.0016

-.0017
-.0010
-.0008
+.0000

-.0167
-.0111
-.0052
-.0043
-.0028
-.0016
+.0000

-.0137 | -.0023

[

+20
-.0162

o

+30
-.0094

[

+45
+.0124

-.0113 -.0038
-.0063 -,0045
-.0031 -.0046
-.0027 -.0045
-.0014 -,0027
+.0000 +.0000

-.0073
-.0042
-.0049
-.0058
-.0024
+.0000

-.0028

-.0010
-.0016
-.0022
-.0032
+.0000

+.0010
-.0012
+.0004
+.0006
-.0015
+.0000

1z

U+ >

2:00
1.50
1.00
0.75
0.50
0.25
0.00

-5°

+0°

+5°

+10° +15°

-.0063
-.0052
-.0039
-.0034
-.0028
-.0023
-.0020

-.0037
-.0036
-.0031
-.0029
-.0025
-.0020
-.0020

-.0014
-.0021
-.0018
-.0021
-.0020
-.0018
-.0020

+.0008 | +.0018

o

+20
+.0085

-]

+30
-.0455

[

+45
-.0008

.0001 +.0003
.0002 +.0004
.0010 +.0006
.0012  -.0005
.0015 =-.0010
-.0020 ~-.0020

L+

+.0060
+.0036
+.0022
+.0004
-.0005
-.0020

-.0040
+.0071
+.0034
+.0017
+.0000
-.0020

+.0008
+.0017
+.0023
+.0034
+.0011
-.0020
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31.4. Boomerang F18, experimental results: nr. 108,



(-] o

o

U+ > -5 +0 +5 +10° +15° +20° +30° +45°
. 2.00 -.1558 | +.1081 |+.2849 +.4054 +.5436 +.5799 +.7183 +.7377
1.50 =-.1171 | +.0544 +.1720 +.2490 +.3222 | +.3581 +.4283 +.4580
1.00 =-.0213 | +.0360 +.0857 +.1279 +.1625 +.1893 +.2203 +.2475
F,, 0.75 =-.0067 |+.0237 +.0532 +.0811 +.1053 +.,1248 +.1470 +.1682
0.50 -.0011 | +.0147 +.0307 +.0467 +.0611 - +.0736 +.0918 +.1055
0.25 +.0037 | +.0108 " +.0177 +.0243. +.0305 +.0362 .+.0452 +.0563
0.00 [+.0067 +.0067 +.0067 +.0067 +.0067 +.0067. +.0067 +.0067
Uy Y =5 +0° +5°  +10°  +15°  420°  +30°  +45°
2.00 +.0585 [ +.0288 | +.0509 +.0843 +.0447 +.1259 +.0292 +.1261
1.50 -.0206 | +.0169 +.0391 +.0458 +.0487 | +.0758 +.0383 +.0657
1.00 -.0177 | +.0122 +,0247 +.0261 +.0357 +.0391 +.0342 +.0288
T,, 0.75 =-.0008 | +.0094 +.0166 +.0210 +.0243 +.0257 +.0272 +.0192
0.50 +.0027 | +.0060 +.0091 +.0121 +.0149 +.0152 +.0173 +.0140
0.25 +.0020 | +.0034 +.0044 +.0051 +.0054 +.0058 +.0061 +.0077
0.00 {+.oooo' +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000
Uty > =5° +0° +5° +10° +15° #20° +30° . +45°
2.00 -.0675| +.0115 | +.0389 +.0394 +.0712 +.0330 +.0186 +.0273
1.50 -.0240| +.0036 +.0170 +.0218.. +,0318 | +.0237 +.0182 .+.0164"
1.00 -.0012 | +.0027  +.0068 +.0103 +.0117 +.0143 +.0137 +.0086
Ty, 0.75 -.0040|+.0016 +,0051 +.0067 +.0080 +.0097 +.0100 +.0058
0.50 +.0004 | +.0010 +.0023 +.0040 +.0048 +.0054 +.0058 +.0038
0.25 +.0002 | +.0007 +.0011 +.0017 +.0026 +.0029 +.0030 +.0025
0.00 [+.0000 +.0000  +.0000 +.0000 +.0000 +.0000 +.0000 +.0000
vy =5° +0° +5° +10°  +15°  +20°  +30°  +45°
2.00 +.0498 [ +.0291| +.0102 -.0103 =-.0287 +.0007 +.0245 -.0059
~ '1.50 +.0281 | +.0184 +.0070 -.0054 -.0128] -.0052 +.0072 +.0003
1.00 +.0097 | +.0084 +.0044 =-.0013 -.0045 -.0058 -.0019 +.0015
F,. 0.75 +.0063 | +.0054 +.0034 +.,0005 -.0026 -.0042 -.0034 +.0003
0.50 +.0032| +.0030 +.0025 '+.0014 =-.0002 -.0016 -.0028 -.0015
0.25 +.0015]) +.0013 +.0011 +.0011 +.0011 +.,0007 =-.0001 ~-.0010
0.00 [+.0000 +.0000 +.0000 +.0000 +.0000- +.0000 +.0000. +.0000 ]|
Uy oy =5° +0° +5°  #10°  #15°  +20° 430>  +45°
2.00 +.0313 ~.0018 | -.0027 +.0044 -.0225 +.0492 =-.0161 +.0526
1.50 +.0122| +.0015 -.0039 -.0067 -.0078] +.0168 =-.0034 +.0191
1.00 -.0021}| -.0002 -.0028 -.0068 -.0033 -.0001 +.0017 +.0023
Fiy 0.75 +.0011 | +.0002 -.0015 -.0036 -.0037 =-.0027 +.0013 +.0001
0.50 +.0007 | +.0005 -.0003 -.0013 =-.0017 =-.0020 -.0003 +.0009
0.25 +.0003 | +.0005 +.0005 +.0003 +.0000 =-.0004 =-.0009 - +.0002
0.00 [+.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000 +.0000
U+ ¢y =5° +0° +5° +10° +15° +20° +30° +45°
2.00 -.0075[ -.0056] -.0015 +.0036 +.0082 +.0137 =-.0183 +.0209
1.50 -.0087 | -.0051 =-.0015 +.0023 +.0072] +.0100 -.0043 +.0055
1.00 -.0049 | -.0033 =-.0015 +.0009 +.0043 +.0060 +.0029 -.0003
T,, 0.75 =-.0037|-.0028 =-.0015 +.0002 +.0023 +.0040 +.0040 +.0003
0.50 -.0025| -.0023 -.0016 =-.0006 +.0007 +.0019 +.0034 +.0024
0.25 -.0022| -.0019 -.0016 =-.0012 =-.0007 =-.0001 +.0008 +.0021,
o.oo| -.0020 -.0020 -.0020 -.0020 =-.0020 -.0020 -.0020 ~-.0020

table 31.5. Boonierang WU, experimental results: nr. 109.
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§32 The choice of parameters for the theoretical boomefangé.

In principle a boomerang's aerodynamic properties are determined by its
shape or geometry. Thus we should only need to take a boomerang's meas-
urements and deduce the relevant aerodynamic parameters. Lack of knowledge
required for this deduction makes this procedure impossible for our ex-
perimental boomerangs. A more realistic approach would be te take some -
measurements, especially length, excentricity and chord of the boomer-
ang arms (see fig. 20.2), and obtain the aerodynamic quantities like CL
and CD from experiments. Here we could make use of the results of the

experiments discussed in §26.

Unfortunately this does not work. If the 1iftanddragcharacteristicsof
boomerang arms in straight flow (see §26) are used as input parameters
in our ﬁinglet model, the resulting forces acting‘on the model boomer-
ang come out wrong. A striking example;rconcerning“boomerang'Ll, is
provided by fig. 32.1. It'contains”four sets of curves, each representing
the dimensionless axial force Flz’ three of them (a,b,c) forthepretical
boomerangs differing only in the values of the parameter CLZ’ and one
(dashed) for experimental boomerangLl. CL2 is the maximum profile lift
coefficient of the boomerang arms, see 2. Curves a are for boomerang
nr. 195 with CL2?=2.0 (2.4 for reversed profile), curves b for boomer-
ang nr. 217 with CL2==1.6 (2.4 for reversed profile) and curves c for
boomerang nr. 222 with CL2=1.2 (1.2 for reversed profile). The dashed
curves are for experimental boomerang L1 (nr. 101) as far as they are
different from those for nr. 195. It is evident from this example that
the maximum lift coefficient of the boomerang arms cannot be much less
than about 2.0. Even nr. 217 with Ci2==l.6 has a Flz which is substan-
tially too low, let alone nr. 222 with CL2==1'2' Yet the maximum 1lift
coefficients measured in straight flow was never higher than about 1.2

for boomerang arms without turbulence wire (see §26).

It seems improbable that this discrepancy is due exclusively to short-
comings in our theoretical model, and that a better modei would yield

the correct forces for a maximum lift coefficient of about 1.2 instead
of 2.0. No doubt there are substantial differences between the airflow

around a fixed boomerang arm on the one hand and an arm forming part of
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fig. 32.1. Component F, vs. y. Drawn curves: theory. Curves a: boomer-
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ang nr. 195, CL2==2.0. Curves b: boomerang nr. 217, C, ., =1.6. Curves c:

L2
boomerang nr. 222, CL2==1.2. Dashed curves: experimental boomerang LI
(nr. 101) as far as different from nr. 195. Numbers with the curves

denote U-values.
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a rotating boomerang on the other hand. This will be discussed further

in the next section.

Since the use of data like those of $26 for the aerodynamic parameters
of the theoretical counterparts.to the .experimental. boomerangs .leads. to
quite wrong results, the only way to make a reasonable choice for these
parameters is by trial and error. The final choice is determined by three
criteria: 12 the parameters should not have unrealistic values, 22 the
agreement of the computed six force components with the measured ones
should be as good as possible, 32 the flight paths calculated on basis
of the computed forces should look realistic. This is admittedly a poor
way of finding the parameters, as it inevitably holds some danger of
working towards a spurious agreement between théOry and experiment. But

there seems to exist no. better way at present.

In principle we can choose, for each boomerang arm, . parameters charac-
terizing the aerodynamic properties of the profiles :at the tip:and.at
the root of the arm,both for normal and for reversed flow: for a two-
armed boomerang eight sets of profile parameters in all. The values of
the parameters at points of the arm between tip and root are obtained
by interpolation. This would lead to an enormous number of parameters,
which could be varied at will. However, because our winglet model is
strongly simplified with respect to reality, this would not make sense.
We shall keep the parameter set described in §22. For each arm we then:
-have,rin addition to length 1 and excentricity e, 20 parameters. At

this point see §22 for the meaning and notation of these.

For some of the parameters a fixed choice has been made for all cases.

For the profiles in normal flow we take:

C.,=-1.0,

L1 =-0.5, dCD=0.03. (32.1)

L3
And for the profiles in reversed flow we take:

dCL=0.10, CLl =-1.0, 2.4, C_,=-0.5,

L3 0.8,

Cra= Cr4 =
32.2)

CDm=0'08’ dCD =0.03.
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(CLl and CL2 are respectively the minimum and the maximum lift coeffi-
cient, dCL is the slope of CL vs. angle of incidence (in degrees)
between CLl and CL2' CL3 and CL4 are the lift coefficients between »
which Cp is constant, Cpm* 94Cp is the slope of Cp vs. angle of incidence
if CL is not beween'CL3 and»CLA.) Except for dCD in: normal flow, the-
precise values of these parameters are not of ' much importance:.CLl'
CL3 are only relevant at negative angles of incidence, and the reversed

and.

profiles are not very important except for high U-values. The chords at
the tips and at the roots, c. and c ., are simply measured. There remain

the following parameters, which can be varied:

normal profl;e : aot’ aor’ dCL, CLZ’ CL&’ CDm
. (32.3)
reversed profile: aot’ aor
which are 8 variable parameters. for ‘each boomerang arm: (a.otvand'va.Or

respectively denote the geometric ‘angles of incidence at the ‘tips and

at the roots of the arms.)

The trial and error method of choosing these 16 parameters for each

boomerang is predominantly aimed at an agreement with experiment for

the axial force F, , as this component is measured with the highest

1z
' relative precision. A very good agreement can be attained, witness fig.
or’ dCL, Csz The

1z L4'and CDm

play a role;. they influence le but also Fly and le. The pitching

'32.1, which fixes particularly the parameters @ e @
component considered next is the axial torque.T, . Here C

torque le can be "adjusted" by increasing e and/or @ . for one arm

and decreasing the corresponding values for the other arm. This hardly
influences any of the five other components. Finally the rolling torque
Tlx can be influenced to some extent by shifting some lift from the
tips to the roots of the arms, for instance by increasing L and

.

decreasing o
got:

We paid attention to one of the more serious shortcomings of our theory,
namely that it produces too high values for Tlx (see $33). We have tried
several ways to decrease the ratio Tlx/Flz' The one finally employed is
the choice of rather high values of the angles of incidence at the roots

of the arms, @ (except for boomerang WU), and a high value C_,=2.4

L2
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of the maximum lift cbefficient for the reversed profiles. But we have
also experimented with a higher value of CL2 at the root than at the
tip. A more drastic method was to introduce a "relaxation parameter"
as a sort of correction for the fact that the flow around a boomerang
~arm is non-stationary. This might cause a delay in the circulation.
around the arm assumed to be proportional to the circulation's rate of
change. This rather complicated procedure, which involved numerical
differentiation of the lift function fz(x,y), yielded only slightly

better results, not enough to justify the method any way.

The final choice of the parameters for the five model boomerangs which
should simulate the experimental boomerangs L1, L4, L6, F18 and WU are

listed in table 32.1.
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Boomerang nr.

195 belonging to Ll: a =298

dc

armi e booep e %or (9l %2 %3 Ca|%om 9%
1.|+71 286 43 57|+5.0 +8.0{.10|-1.0 +2.0 -0.5 +1.0|.06 .03
reversed profile|-1.0 +5.0(.10{-1.0 +2.4 -0.5 +0.8(.08 .03
2 |-61 296 41 57(+2.0 +8.0|.10{-1.0 +2.0 -0.5 +1.0|/.06 .03
reversed profile{+2.0 +5.0|.10{-1.0 +2.4 -0.5 +0.8|.08 .03
Boomerang nr. 237 belonging to L4: a =291
arm| e 1 . % %or dCL CLl CL2 CL3 CLA CDm dCD
1 |+79 280 37 63|+2.0 +7.0|.09|-1.0 +1.8 -0.5 +1.0(.06 .03
reversed profile|+2.0 +4.0|.10|-1.0 +2.4 -0.5 +0.8(.08 .03
2 |-58 286 38 64|+4.0 +7.0[.09|-1.0 +1.8 -0.5 +1.0|.06 .03
reversed profile|+0,0 +4.0/.10{-1.0 +2.4 -0.5 +0.8].08 .03
Boomerang nr. 241 belonging to L6: a =249
arm| e 1 e %o %or dCL CLl CL2 CL3 CL4 CDm dCD
1 |+59 241 43 53{+4.0 +11.0}.08|-1.0 +1.7 -0.5 +0.8}.04 .03
reversed profile|+0.0 +2.0{.10{-1.0 +2.4 -0 +0.8/.08 .03
2 |-35 247 43 53|-1.0 +7.0{.08i-1.0 +1.7 =-0.5 +0.8]{.04 .03
reversed profile|+5.0 +6.0/.10|/-1.0 +2.4 -0.5 +0.8[.08 .03
Boomerang nr. 242 belonging to F18: a =258
armp e 1oep et e 190 Cy G G Cua(Cpm 45
1 |+76 249 44 54|+3.0 +6.0;.09(-1.0 +1.8 -0.5 +0.8}.04 .03
reversed profile|+1.0 +4.0|.10|-1.0 +2.4 -0.5 +0.8}.08 .03
2 |-48 251 44 54|+1.0 +6.0;.09!-1.0 +1.8 =-0.5 +0.8|.04 .03
reversed profile|+3.0 +4.0i.10 -1.0 +2.4 -0.5 +0.8{.08: .03
Boomerang nr. 239 belonging to WU: a =296
armi e 1 e e fo @ 141G, Cp Gz O %m 9%
1 |+76 281 40 40i{+3.5 +4.0!/.10{-1.0 +1.7 -0.5 +1.0|.06 .03
" |reversed profile:+2.0 +2.0|.10:-1.0 +2.4 -0.5 +0.8|.08 .03
2 |-69 293 39 39|+3.5 +4.0l.10{-1.0 +1.7 -0.5 +1.0{.06 .03
reversed profile|+2.0 +2.0|.10|-1.0 +2.4 -0.5 +0.8(.08 .03

table 32.1., Listing of parameters for the theoretical counterparts of

the five experimental boomerangs. See $§22 for explanation. Lengths in

mm, angles in degrees.
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£33 What is the difference between theory and experiment?

The extent to which the theoretical results resemble the experimental
ones can be judged by inspecting the graphs in %31. We shall do this
first, and then discuss the possible causes for the discrepancies .

between theory and experiment. Let us consider the components one by

one.

The axial force F]z.

A surprisingly good agreement can be attained for this component. In
all five cases the differences between theory and experiment are about
as small as those shown in fig. 32.1. Only for tp=45°, 0.5 :'Ui-l":S the

theory comes out too low.

The rolling torque T

1x :
Here the agreement is rather ‘poor. Experimentally this component, con- -

sidered as a function of ¥ for constant U, has a maximum for y=~10°-15°
Theoretically Tlx increases much further and attains its maximum only

o . . o
for y=~30 . Our theoretical model cannot produce results significantly

better than this. We remark that the experimental values of T may

1x

contain serious errors due to malfunctioning of measuring element 11
£ . \ . .

(see 429). With boomerang L6 quite some negative values of T]x have

been measured, which appears unrealistic.

The pitching torque Tiy' ~
Théoretically this component, as a function of Y for constant U, has a

maximum for Y~15°, and for higher y systematically drops below the

experimental values.

The backward force le' _

This component is positive for w'i10° and negative for ¥ >10°; in this
respect theory and experiment agree. But the theoretical values are too
low, particularly for higher § the theory produces values which are too
strongly negative. This cannot be improved without impairing the agree-
ment for le. However, one should keep in mind that. the total force
acting on a boomerang is a vector with magnitude /531753::52’ where Fz
is by far the greatest component. So the differences between theory and

experiment in the components F

I1x and Fly are not of much importance as
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regards the total force.

The sideward force Fly’

According to the theory this component is very small: |F1y|450f005' Ex-
perimentally it is less small and generally negative. This is a.system— -
atic difference between theory and experiment. Probably‘Flyv(and T]x '
too) contains some substantial errors due to malfunctioning of element

11, see further down. But anyhow, the differences in F, between theory

ly
and experiment are not very important.

The axial torque le.
For this component the agreement between theory and experiment is rather

good, but not quite so good as for F, . A systematic difference is that

1z
the curves for constant U theoretically have a minimum at y=~-2°, but
experimentally for ¢ <-5°. Remark: for boomerang WU a better agreement: .
is possible by choosing dCD==0.027, instead of 0.030 according to

(32.1), this would increase T

- for higher values of .

The differences between the theoretical and the experimental results
may be due to either experiment or theory or to both..The'experimental
errors are discussed in £29. Since their effects are difficult to
assess, it is also difficult to explain the discrepancies between theory
.and expériment on the basis of these errors. But it seems worthwhile to -
investigate the possible effects: of malfunctioning of measuring element
11. Errors in element 11 influence the components F, and T, 1in partic-

ly Ix
ular, according to the matrix A in table 28.2. Consider the linear com-

bination:

_62.7 cm F. w~T - 2F. .

Tlx a ly 1x ly

This quantity would be nearly independent of element 11, see fig. 27.3.
One could compare it with the corresponding theoretical quantity. Better
still: compute, starting from a corresponding theoretical boomerang
(e.g. nr. 195 for L1), by means of the inverse matrix A-], the expected
output of element 11. Thén recalculate the six experimental components
with this "corrected" output of element 11. All of these components are
modified now, but especially Fly and Tlx' Naturally, the "corrected"

Fly resembles its theoretical counterpart much more now, but what has
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become of Tlx? The graphs (not shown here) look better, they have less
humps. The values for boomerang L6 are not negative anymore. This
strongly.indicates that substantial irregularities in Fly and Tlx (see
the graphs in §31) are indeed due to errors in element 11. However, the
"corrected" values'of*T]'x turn out to. be systematically too high. If:
they are used in flight path calculations, the flight paths are not
nearly as realistic as those based on the original experimental compo-
nenfs. One cannot but conclude that, although the experimental values
of Tlx may contéin serious errors, in the main this component has been
measured reasonably well, at least in that part of (y,U)-space which is
traversed in boomerang flights. Klso the negative experimental values
of Fly probably are realistic. Finally this means that o:r theoretical
Ix at ¥ >10 . The flight
path comparisons in Part III, Ch. III provide additional material

model actually produces too high values for T

relevant to the aerodynamics of boomerangs.

What are the shortcomings of the theoretical model? Two categories can
be distinguished: 1. the winglet model is too simple, 2. the air flow
around rotating boomerang arms does not behave like an ideal fluid.
Examples of the first category: the winglet model has an infinite num-
ber of winglets in a steady flow instead of two arms in an unsteady
flow, the model is linearized, the main aerodynamic forces are supposed
to be ‘perpendicular to the boomerang's plane of rotation. Better models
could be developed which would be more realistic in these. respects,..but
still be based on the equations of an ideal fluid. One aspect of the
differences between the winglet model and a model in which each boom-
erang arm is represented by a lifting line (such as Ichikawa's [1967]
theory for helicopter rotors), is the distribution of the shed free
vorticity over space. Figure 33.1 illustrates this point. It relates to
a boomerang with two straight, thin arms joined at an angle of 1800, in
other words: a rotating straight stick. Fig. 33.1 shows in which parts
of the circular region S this boomerang meets free vorticity shed by

it previously (i.e. comesvinto contact with fluid which has touched the
boomerang previously). The vorticity is supposed to drift with the un-
disturbed flow. The boomerang's angle of incidence ¥ is zero. The pic-
tures exhibit a striking difference from the w1ng1et model in which the

winglets meet free vort1c1ty all over S.
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fig.-33.1. A rotating "straight stick" boomerang meets free vorticity
shed by it previously in the shaded parts of circular region S. Rotation .
counterclockwise. Undisturbed flow:from:left to right. y.=0°. a: U=.1,
b: U=0.5, c: U=0.25. -

As to the second category: The lift and drag characteristics may depend
on the momentary flow situation as well as on previous conditions (hys-
teresis). Also the flow around a boomerang arm may be not so smooth,
the airflow may separate, the Kutta condition may be violated, etc.
About these matters not much appears to be known. The knowledge would
first have to come from experiments before it could be incorporated in
theoretical models. That the floﬁ'around‘rotating airfoils may substan-—
tially differ from two-dimensional flow around the same airfoils at the
same local Reynolds numbers seems certain. As was remarked in §32, the
profile lift coefficients of arms. forming part of rotating boomerangs
can be much higher than in straight flow. This effect is s6 strong,
that boomerangs with the experimental lift and drag characteristics of
§26 would hardly be able to traverse return flight paths, in contra-

distinction to real boomerangs (see Part III, §31).

A similar phenomenon has been investigated by Muesmann [1958] for axial-

flow compressor blades at low Reynolds numbers. It should be emphasized:
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that Muesmann's case differs fromour own in the direction of the main
flow with respect to the axis of rotation. With axial-flow compressors
the blades experience a steady flow. With boomerangs the flow has a
component parallel to the boomerang's main plane (except if ¥ =%90°),
so that the arms experience an unsteady, periodic. flow. (Helicopter .
rotofs resemble boomerangs.in this respect, but operate at much. higher
Reynolds numbers. As far as I am aware, the presenée of the mentioned
phenomenon has not been established for helicopter rotor bladéé.)
Muesmann [1958] compared the experimental compressor performance with
calculations based on the lift and drag characteristics of the blade
profiles measured in two-dimensionai flow. These latter measurements
[Muesmann, 1959] were done at Reynolds numbers (Re) between 17000 and
400000. The local effective Reynolds numbers‘(Re*) at the rotating com-
pressor blades varied between 10000 and 400000. The geometry of Mues-

mann's compressor rotor is shown in fig. 33.2. The blade profiles

b /~,00 .

fig. 33.2. Taken from [Muesmann, 1958, p. 351]). Geometry of Muesmann's

experimental axial-flow compressor rotor. Measurements in mm.

increase in thickness from 8% at the tips to 20% at the roots. Chords
are constant. The under (pressure) sides are flat. According to Mues-
mann [1958], the main difference between the experimental performance
of the compressor and what would be expected on basis of the measure-

ments in straight flow can be interpreted as a decrease of the critical
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Reynolds number (= Re at which transition from supercritical to subcrit-

ical flow occurs, see $26) for rotating blades, see tablé'33.l.

r/R th/ch Re crit Re* crit

1 .08 | 40000 | 30000-40000 -
7/9 | .12 50000 | 30000-35000"
5/9 | .16 83000 | 25000-30000
1/3 .20 | 105000 | 20000-30000

table 33.1. From [Muesmann, 1958, p. 360]. Local critical Reynolds

*

numbers Re™ crit of rotating compressor blade profiles (see fig. 33.2)

compared to those in two-dimensional flow, Re crit.

What is the cause of this remarkable phenomenon? Muesmann: [1958, p: 360]
states that it must be essentially due to' the boundary: layer's being:
influenced by centrifugal and coriolis forces, which lessen the flow's
tendency to separate from the airfoil. It is likely that similar effects
play a role in the aerodynamics of boomerangs. It is exactly the preven-
. tion of separatfon which makes a good performance at low Reynolds num-
bers possible for boomerangs. It would be extremely interesting to in-
vestigate experimentally the relevant phenomena, in particular the

effects due to unsteadiness of the flow.

To sum up: despite its,obvidus;limitations;.our“wingletvmodelrproducesw
results which do not agree too badly with experiments. In particular
‘for the axial force Fz an almost perfect corresﬁondence with experiment
can be attained. Aithough the theoretical model boomerangs show some
systematic differences from the measurements, they nevertheless behave
like true boomerangs. This is also shown by the flight path calculations

presented in Part III.
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PART III
MOTION

Dies ist der wunderbare Bumerangwurf, der vor allen anderen Wirfen
den Schauenden in Staunen und Verwunderung versetzt.

[Gerlach, 1886, p. 86]
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§1. Introduction

Part III is about the dynamics and motion of boomerangs. The investi-
gations feported here are both theoretical and experimental. In
Chapter I equations of motion for .the flight.of a boomerang are
derived. The boomerang is considered as a fast spinning rigid body
on which unspecified forces and torques act. The exact equations

are simplified by "smoothing": fluctuations within one spin period
of quantities such as the boomerang's velocity and orientation or
the aerodynamic forces are disregarded. The final equations of
motion contain the unspecified aerodynamic forces, which are
functions of the - as yet unknown - motion. §5 forms a link with
Part II: it deals with the forces acting on a boomerang in its
flight. In the numerical flight path calculations we shall use
either the theoretical or the experimental aerodynamic forces of
Part II. This means: if, at a given instant during a theoretical
flight, the boomerang's speed is V, its spin w, and its angle of
incidence ¥, the aerodynamic forces of Part II for this combination
of V, w? and ¥ are used. However, it should be emphasized that any
other aerodynamic boomerang model may also provide numerical values
for the forces to be used in the equations of Part III. Some general

aspects of boomerang flight paths are discussed in §7.

Chapter II deals with field experiments. Four experimental boomerangs,
each equipped with an electric light, were thrown at night. Their
flight paths were photographically recorded by a pair of cameras.

A selection of the resulting stereo pictures is presented in

Chapter III, together with stereograms of computed flight paths.
' On the basis of this material the reader may form his own opinion

as to the agreement between theory and experiment. -

Chapter IV, which is mainly theoretical, contains various examples .
of how a boomerang's flight path is influenced by certain changes
in the manner of launching and the boomerang's shape, or by the
presence of wind. $35 is about straight-flying boomerangs. In both

-Chépter II1 and Chapter IV the flight path pictures are intended to
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serve as sources of information on the motion of boomerangs, rather
than as mere illustrations. The text of these chapters may rightly

- be considered as less important than the pictures.

The reader who wants to follow the main line‘of Part III is
suggested to read the following sections:

Chapter  I: §§2, 3, 4, 5, 6, 7.

Chapter 1II: §§ 10, 12, 14.

Chapter III: any selection including §22.

Chapter 1IV: any selection.

A list of references is given at the end of Part III.
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CHAPTER I

THEORY OF BOOMERANG MOTION.

§2 Smoothing and stability.

In the next sections we shall derive equations of motion for boomerangs,
in which the aerodynamic forces are left unspecified. The actual magni-
tudes of these forces must be derived either from a theoretical model

or from measurements.

A boomerang is considered to be a rigid body behaving like a fast top.
It is assumed to rotate rapidly about the principal axis through the
centre of mass with the greatest moment of inertia. The forces acting
on a boomerang can be expected to have fluctuations with a period equal
to the period of rotation. We shall work, however, with smoothed or
averaged forces. This has the advantage that the equations of motion
are simplified, and thattin the numerical calculation of boomerang
fligh paths considerably less integration steps are required. Another
reason for this simplification arises from the fact that both the aero-
dynamic model and the experiments described in Part II deal with the

averaged aerodynamic forces only.

The justification of smoothing can be based on the assumption that the
fluctuations and variations in all relevant variables during a boomer-
ang flight are of two distinct kinds: they are either fast or slow.

Fast variations have characteristic times of the order of one rotation
period or less, whereas slow variations have characteristic times much
greater than the rotation period. For instance, variations in a boomer-
ang's phase angle and the aerodynamic forces during one spin period are
of the fast kind, whereas substantial variations in a boomerang's linear
speed, rotational velocity, angle of incidence, positioh and orientation
of spin axis are of the slow kind. The fast‘fluctuations are considered
as small disturbances which cancel after integration with respect to
time, and the operation of smoothing can be regarded as a sort of time-

averaging over a small number of rotation periods. Integration of the

334



exact equations of motion would undoubtedly result in all the variables
having fast fluctuations. If one starts with smoothed equations of
motion, the resulting variables turn out to be smooth also, but one
cannot be certain that their values correspond to those obtained from

smoothing the results of the exact equations.

A disadvantage of this smoothing or averaging is, of course, that infor-
mation concerning fast variations of mechanical and aerodynamic quanti-
ties is lost. A far more serious drawback is that the smoothed equa-
tions of motion may in some cases lead to a motion which deviates very
much from the motion based on the exact equations. This problem is
closely related to the question of stability of motion. If its motion
is not sufficiently stable, a boomerang may "wobble" more and more,
loose its spin and descend fluttering like a wounded bird. Such unsta-
bility may be caused by bad launching (spin too slow) or by a bad shape
of the boomerang. For instance, boomerangs of which the arms include a
very obtuse angle ¢4 150°) have a relatively small difference between
the greatest and the middle principal moments of inertia. It seems that
the motion of such a boomerang can easily become unstable. In the
absence of aerodynamic forces, a boomerang's spin would be unstable if
this difference would vanish.

" ‘Remark: If principal axes are mentioned, it is to be understood that
‘these are through the boomerang's centre of mass; the principal moments
of inertia are with respect to these axes. If mention is made of the
principal axis or of the moment of inertia, the one associated with the

greatest principal moment of inertia is meant.

It would be of considerable interest to derive some definite rules as
to the conditions under which a boomerang's motion would be stable or
unstable. This problem, however, is rather difficult to solve, sinée
detailed information would be needed concerning the aerodynamic forces
and their variations during a rotation period, wiﬂnandwithoutwobblihg.
At present such information is not available. We have, however, tried
to make a simplified investigation into this question of stability, by
using an aerodynamic model in which the induced velocity of the air is

neglected. We investigated the theoretical behaviour of boomerangs. with

2, 4 and » identical arms, but the results did not seem to be meaningful
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Therefore we omit a discussion of the conditions for stability of motion.

altogether.

It seems probable that the smoothed equations of motion, which will be
used as a basis for our flight path calculations, form reasonable
approximations to the exact equations as long as the exact motion would
be stable. Cases in which the exact motion would not be stable cannot
be distinguished By our theory and hence would be treated incorrectly.
We cannot give any theoretical criterion for stability, except. for
these two qualitative omes: 12 the boomerang's spin_éhould be suffi-
ciently fast, and 22 the boomerang's greatest principal moment of

inertia should be sufficiently greater than the middle one.

fig. 2.1. Three idealized types of boomerangs. Dots denote centres of

mass.

Just for example let us consider three idealized types of boomerangs
with regard to point 22, The first two consist of_twb equal, straight,
thin arms joined at an angle ¢. Type a has a constant mass per unit of
length along the arms, type b has a mass per unit of length which varies
linearly along the arms and is zero at the tips. Type c consists of four
equal, straight, thin arms joined crosswise at angles ¢ and w—. See
fig. 2.1. Let the principal moments of inertia in each case be Il’ I
and I, with I, <I,<I;. Because the boomerangs are plane bodies:

Il-+12 ==I3. Figure 2.2 contains graphs of the quantity (13--12)/13

2

vs. ¢ for each of the cases a, b and c. If, for instance, (13'—12)/13
should be greater than 0.1, then @ should not exceed 113° for type a,
120° for type b and 143° for type c¢ boomerangs.
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fig. 2.2. Graphs of (13--12)/13 vs. @ for the cases a, b, c of fig. 2.1.

It is not suggested that. (13-12)/132’0.1 is an actual condition for
stable spin of boomerangs. By very careful launching it is possible to
make a straight "boomerang" (@=180°), with a length of 20 cm and a
width of 2} cm, spin stably (see Part I, 9 about Celebes). For such
an object: (13-I2)/I3N1/65.
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33 Equations of motion (I).

Throughout this chapter, a boomerang is considered as a rigid body. The
angular momentum vector of this body is approximately parallel to the

body's principal axis with the greatest moment of inertia.

We shall use threevright-handed cartesian coordinéte'systems:

1- (X,Y,2), a fixed inertial system with respect to which we want to
calculate the boomerang's flight' path.

2= (1,2,3), a system fixed to the boomerang. Its origin is the boomer-
ang's centre of mass, the axes are the principal axes of the boomer-
ang, in the order of increasing principal moments of inertia.

3= (x,y,2), a system partially fixed to the boomerang. The z-axis coin-
cides with the 3-axis. The projection of the velocity of the boom-
merang's centre of mass onto the.(x,y)-plane points in the negative

x-direction. The origin is again the boomerang's centre of mass.

fig. 3.1. The three coordinate systems (X,Y,Z), (x,y,z), (1,2,3).

We shall first derive the boomerang's equations of motion with respect
to the (x,y,z)-system, since this system is directly related to the
bobmerang's state of motion with respect to the air. The (x,y,z)-system’

rotates at an angular velocity:

->
Q= (Qx,Qy,Qz)

338



Qz is determined kinema;ically by the fact that the y-component of the
velocity of the boomerang's centre of mass is zero by definition. The
motion of the boomerang can be separated into two parts: the motion of
its centre of mass, and the motion of the body with respect to its

centre of mass.

A. Motion of the centre of mass.

The velocity of the boomerang's centre of mass is
V= (V.,V,V)
TV y? s
where the components are given in the x,y,z-directions respectively. By

definition of the (x,y,z)-system we have

(3.1)

-> : .
Let further F be the resultant force acting on the boomerang, m the

boomerang's mass. Now:

o3
]
o4

(3.2)

oy
[
2

A dot indicates differentiation with respect to time. As shown e.g. by

Hauser [1965, Ch. 3]:

> d_) d-" > >
F-SR.(d2), 3 (3.3)

where the prime indicates that the differentiation has to be performed

with respect to the rotating (x,y,z)-system. Thus we have, using (3.1),

F =m(V +V Q)
X X zy
Fy = m(vxszz - vznx) (3.4)
Fz = m(Vz - Vny)

The second of these equation determines Qz. The exact equations (3.4)

are now replaced by the approximate, smoothed omes:
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X X z'y

Fy = m(VxQz - VzQx) (3.5)
'F_=an(@_ -VQ)

Tz z Xy

Here overbars denote smoothed quantitieé. f;, ?&, f; are the smoothed
or time-averaged forces (which, in our case, are either taken from the
winglet model or from wind tunnel measurements). The other smoothed
quantities: V;, V;, 5;, ﬁ;f ﬁ;, are to be solved from the complete,
smoothed equations of motion. This solution will not be exact, since
equations (3.5) are not correct. One can only hope that they provide a
reasonable approximation for the motion of the boomerang's centre of

mass, and that it is merely the fast variations which are neglected.

B. Motion with respect to the centre of mass.

(A good reference on this subject is [Hauser, 1965, Ch. 4].) Let the

. >
boomerang's angular velocity be w

(mx,my,wz). Because of the defini-
tion of the (x,y,z)-system:

(3.6)

= ) . >
Let T be the resultant torque acting on the boomerang and L the angular

momentum vector of the boomerang. Then

T=1 (3.7)
and
= _ ar. _ Qi)' > >
T = ac - \ac + QxL (3.8)

where again the prime indicates differentiation with respect to the

(x,y,z)- system. Thus:

T =1 -LQ +1L§Q

X X y 2 z'y
Ty = Ly - LA +L@ (3.9)
T =L -LQ +1LQ

z z Xy y x
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These equations are only useful if we have expressions for L X’ Ly’ L
and their time derivatives. Therefore we now consider the (1, 2 3)—sys—
tem. Its coordinate axes coincide with the boomerang's principal axes

with corresponding principal moments of inertia I I, with

Iys 3
Il <12 <I3. As stated in the beginning of this SéCthﬂ the 3-axis is
identical with the z-axis. The angle between l-axis and x-axis (and

between 2-axis and y-axis) be ¢, so that

$

"
€

(3.10)
w

"
€

3 z

The angular momentum components with respect to the (1,2,3)-system are

related to the principal moments of inertia in a simple way:

L = T,
L2 = Izwz (3.,])
Ly = Ijug

The transformation of the components of a vector from the (1,2,3)-sys-

tem to the (x,y,z)-system and vice versa goes according to the scheme:

1 2 3
X | cos¢ =-sind 0 (3.12)
sin¢ cosd 0
0 0 1
Therefore we have:
Lx = L] cos¢$ - L2 sin¢ = Ilml cos¢p - 12w2 sin¢
Ly = Ll>31n¢ + L2 cosd = Ilwl sing + 12w2 cosd (3.13)
L, =1 = I3ug
w, = +wx cos¢ + wy sin¢
wy = -w_ sing + wy cos¢ (3.14)
w3 = +wz

341



Substitute (3.14) into (3.13):

Lx = i(I] + IZ_)mx + i(I] - 12) (mx cos2¢ +wy sin2¢)

Ly = i(I1 + ?[z)my + »E(I1 - Iz) (mx sin2¢ -wy cos2¢) _ (3.15)
I"z = Isz

Using (3.10) we obtain by differentiating (3.13):

L =Ilm],cos¢-12m2 Sln¢+(m3-nz_)(—llwl sinp -1, w

x gy cos9)

L =1 0, sing +I.w cos¢+(m3—Qz)(+I]m

y 199 o¥s coscb—Izm2 sin¢) 7r(3.16)

1
and by differentiating (3.14):
w, = +u)x cos¢ + wy sind + (mz -Qz) (-wx sing +uuy cos¢)
Wy =0 sin¢g +my cos¢ + (mz - Qz) (-@x cosé —wy sing) (3. ?7)
“3 = +‘:)z

Substitute (3.14) and (3.17) into (3.16):

I."x = i(Il + Iz)d’x + £(Il - 12) (-‘(:)x C052¢ +l;)y Sin2¢) + W
+ (I, -1,)) (v, -2,)(-w_ sin2¢ *tug cos2¢)
f.y =4(1, + Iz)c:»y + i(Ii -1,) (+‘;’x sin2¢ +‘;’y cos2¢) + }(3.18)

+ (Il - 12) (u)z - Qé) (+uox cos2¢ +wy sin2¢)

Substitute (3.13) and (3;18) into (3.9) and use (3.6):

_ - _ e . . 3

Tx = £(11+12)mx £(Il+12)myﬂz + I3mzmy + i(I] 12)( w_ cos2¢ +wy sin2¢) +
+ i(I]—Iz) (2wz—Qz) (--mx sin2¢ + u)y cos2¢)

Ty = “Il+12)wy + &(Il+12)wxﬂz -Tyw,w + i(Il—Iz) (+wx sin2¢ + wy cos2¢) +

+ 5(11—12) (sz-Qz) (+wx cos2¢,+ my sin2¢)

. 2 2, . : -
T, = L, + (Ilﬂ—IZ)[(mx +,my)51n2¢ gCH cos2¢] : | £(3.19)
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In the special case with II =Iz==I|2, (3.19) reduces to

Tx = Ilzwx + (1311»z - I] 2Qz)(.oy

Ty = II.Zwy - (I3wz - Ilzﬂz)mx , (3.20)

which are the equations for a symmetric top with respect to the (x,¥,2)-

system. Up to this point all of the equations are exact.

We simplify the equations (3.19) by smoothing them and write:

€
el

T = i(I1 +I,)u, - (T, +Iz)myszz+I3 2%y

Ty=£(11 +I2)wy+%(ll +12)mxﬂz"13(ﬂzwx (3.2‘)
Tz'= IBmz

The remarks made with regard to (3.5) also apply to (3.21). The terms
with sin2¢ and cos2¢ have been omitted, as they seem to be importént

only with regard to the fast variations.

Using the abbreviations.I12 =£(II-#12), we can write (3.21) as

12727y
Ty=112wy-— (I3mz -IlZQz)mx (3.22)
Tz = I3wz

This resembles the equations for a symmetric top (3.20). A second sim-

plification can be made. Boomerangs spin rapidly, i.e. we generally

have:

lo s Tugl, 12| << |a |
KOy e e (3.23)
G ] << (53,1, [ | <[5,

The last two inequalities express that Ex and Ey vary relatively little

within a small number of spin periods. Thus we obtain as an approxima-

tion of (3.22):
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H|
]
+
-
el
gl

X 37z'y
TY = —I3mzwx : (3.24)
Tz = I3wz

These are our final equations for the motion of a boomerang withrespect

to its centre of mass.

A slightly different way of arriving at (3.24) from (3.19) results from
interchanging the order of the smoothing and the fast spin approxima-
tion. If we first use the inequalities (3.23), which now are understood
to hold between the exact variables rather than between the smoothed
variables, (3.19) can be simplified to:
_ Tx=+13wymz + (II —Iz)wz(—wx sin2¢ +wy cos2¢)
= - - 4 *
Ty I:‘;wxmz + (I] Iz)wz(+wx cos2¢ +wy sin2¢) (3.227)
o _ 2,20 .
Tz- I3mz+ (I1 12){(mx+wy)51n2¢ wxmy cos2¢}
Smoothing (3.22*) yields (3.24).

The eq‘uations (3.5) and (3.24) will be used as a basis for the calcula-

tion of boomerang flight paths.
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Sa Equations of motion (II).

The equations of motion of a boomerang with respect to the (x,y,z)-
system are given by (3.5) and (3.24). From now on we shall use the

smoothed or averaged variables exclusively and omit the overbars.

In this section we shall derive the equations of motion with respect
to a fixed inertial system (X,Y,Z), The Z-axis points verically upward,
the (X,Y)-plane is horizontal. The relation between both coordinate

systems is determined by the Euler angles ¢, ¥, 9, as shown in fig. 4.1.

By definition 0 <d <.

Z-direction

Y-direction

direction line of nodes

‘fig. 4.1. The Euler angles defining the relation between the (x,y,z)-
-and the (X,Y,Z)-directions.

The transformation of the components of a vector from the (x,y,z)-
directions to the (X,Y,Z)-directions and vice versa is given by the

following scheme (see [Hauser, 1965, Ch. 9]):

X o y z

X|+cosy cos® -cosd® sin® siny | -siny cos® - cosd sin® cosy | +sind sing

Y|+cosy sin® + cosd® cos® siny | -siny sin® + cosd cosy -cosy | -sind cosy

+sing siny +sind cosy +cos?d

(4.1)

For the angular velocity ® of the (x,y,2)-system we now have [Hauser,
1965, Ch. 9]:
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Qx=+1§ cosy +® sind siny
.Qy=—é siny +©@ sind cosy (4.2)
Qz = lb+tD cosd

which leeds to

. N
b =9x cosy —Qy siny
©=simp (9, sinv +9_ cosy) , 7 (4.3)
p=0 - gosd (Q siny +Q_ cosy)
z sing y J

From (3.24) we obtain, using (3.6):

T 3
Q =w_= -—>L
X X I, w
3z
. Tx B
Q =w =+ ' >(4.4)
y y. I3mz .
T .
w ===
z I3 ,
And from (3.5):
F Vzo) h
Qz = mV * \Y
X X
L Fx
V =— =-Vou . r(4.5)
X m zy
. F,
V =— +Vow
z m x J

At this point we introduce the variables V and ¥ defined by:

V_ = -V cosY
X .
Vz = -V sin¥ (4.6)
V>0, |¥]<in
(Remember. V <0, Vy-O .) V is the boomerang's linear velocity, VY is

the angle between the negative x—-axis and the direction of the
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boomerang's velocity. We call ¥ the boomerang's angle of incidence.
(This same angle was denoted by ¢ in Part II.) The use of ¥ and V in-
stead of Vx and Vy is merely a matter of convenience. Now (4.5) can be

written in the form:

F S 3
= - — v
'Qz mV cosY * " tg¥
. 1 . . :
V= — (-F_ cosY - F, sin¥) | > (4.7)
. l .
¥ o=—7 (F_ sin¥ -F_ cosY) + wy J

Equations (4.3), (4.4) and (4.7) determine the motion of a boomerang.

They can be taken together as:

T i
o ==Z
z 13'
. 1 . ,
vV = o (--Fx cosY —.Fz sin¥) }(4.8)
. 1 . Tx
y == (Fx sin¥ - I"z cos¥) + T o
3z J
9 = 1 (-T_ cosy - T_ siny) )
I3mz y X
- _ 1 1 s »
P = -I:;-Tz " Sing ° ( Ty siny + Tx cosy) f(4.9)
T
b = = — X A 7
v mv cosy _ °BY I3mz cosd . ¥ J

For the position (X,Y,Z) of the boomerang's centre of mass we simply
have:

X =V{-cos¥(cosy cos@ -siny sinp cosd) - sinv sin@ sind}
?=V{—cos\l'(cosw sing + siny cosyY cosd) +sin¥ cosy sing} (4.10)
Z =V{-cos¥ siny sind - sin¥ cosd}

Equations (4.8), (4.9) and (4.10) have to be integrated numerically. The

forces and torques F_, F , F , T , T » T_must be given as known func-
x> Ty’ Tz’ x Ty’ Tz

tions of the state of motion. If the initial conditions are provided,
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these nlne I[1IST OXaer alirerentlial equatlions can.be soivea LOr Lne

nine,unknowns¢uz, v, ¥, 9, ¥, ¥, X, Y, Z as functions of time, t.

The equations of motion (4.8) and (4.9) contain singularities if varia-

bles in dominators vanish. Four singularities may occur, represented by:

sind-+0
cosY >0
V>0

w_ +0
z

(4.11)

Let us consider these cases one by one.

Boomerang's plane horizontal.

. If sind+0, both |¢| and Iil tend to . This singularity is just a mat-
ter of coordinate systems: the line of nodes (see fig. 4.1) moves
wildly around, but physically nothing happens. If sin9~0, ® and § have
no physical significance, but the. quantity 6-#@5892 has, and behaves '
properly. This singularity can be removed by choosing instead of (X,Y,Z)
another coordinate system, which is to be used temporarily if sind is

smaller than some chosen value.

Boomerang's plane perpendicular to forward velocity.

If cosY >0, |Qz| and |{| tend to . From a physical point of view again
nothing extraordinary happens. Merely the x- and y-directions are ill-
conditioned if ¥Y~tin. However, if Qz becomes large, the condition

Imzl >>|Qzl (3.23) can be violated, so that the equations of motion
become invalid. Perhaps the theory could be improved in this respect by
replacing I3mz in equations (4.8) and (4.9) by IBmzﬁ.IIZQz according to
(3.22), or by‘I3(wz-£Qz). (I]2=£(Il'+12)$8i13 because a boomerang
generally is an almost plane object.) Then Qz would have to be solved

from

-Fy Vz —Ty
Q = + . . (4.12)
z w, V 13(mz &Qz)

X

instead of the first equation (4.7).

Boomerang's forward velocity vanishes.

If V-0, IQZI, I@I and I@I tend to «». As far as Qz and @areconcerned,
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the problem is the same as above: in both cases,Vx==V cosY +~ 0. However,
if V~0 the boomerang's angle of incidence Y is ill-conditioned. Again,
from a physical viewpoint nothing extraordinary happens: both Vx and V
vanish, but Vx and Vy behave properly, so that these quantities could

be used instead of V and V.

Boomerang's rotational velocity vanishes.

if wz-+0, the equations of motion would be completel& invéiid. OQur-
model is based on the assumption that w, is sufficiently large in com-—
parison to W and wy. As soon as wzfso would occur in flight path cal-
culations, the results would have no meaning at all. This is not actu-
ally a serious problem, however, as we do not intend to apply the theory
to such cases. In reality w, is never small during a reasonable boom-
erang flight, or the boomerang would lose its boomerang-like qualities

and flutter down.
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V5 The forces acting on a boomerang.

We shall make the following assumptions concerning the boomerang, the
medium (air) through which it moves, and gravity:

a) The boomerang is a rigid body. Its size is characterized by its
"radius" a, which is the radius of the circle occupied by the boomerang
when spinning about its prigoipél axis. (For a more precise definition
of ‘a, see Part II, $§20.) fﬁe-'boomerang's mass is m, its principal
moments of inertia, in increasing order, are I], Iz, I3. Its average
density (= mass/volume) is p.

b) The medium is homogeneous, isotropic, constant in time, infinite in
extent. Its density is p, its kinematic viscosity is v. Aerodynamic or
mechanical effects due to the presence of objects such as ground and
trees are not taken into account.

c) The constant acceleration due to gravity is §, directed downward in .

negative Z-direction.

The forces acting in a boomerang are of two kinds: forces due togravity
and forces due to interaction with the air. We denote the gravitational

forces by a subscript g and the aerodynamic forces by a subscript a.

Thus we have:

- - ->
F=F, +F »
(5.1)
T=7
a
The components of fg in the (X,Y,Z)-system are:
fé = -mg(sind siny, sind cosy, coss) (5.2)
Hydrostatic forces can be taken into account by replacing g by:
= g(1 - u/p) (5.3)

If the boomerang is inhomogeneous the hydrostatic forcé may produce a
torque which should be added to f in (5.1). We shall neglect the

effects due to such a torque (although it would be quite easy to take

these into account).

It is not quite so simple to obtain expressions for the aerodynamic

350



forces, which may depend on:

a) the properties of the air: e.g. den51ty, v1scos1ty, turbulence.
b) the shape of the boomerang.

c) the boomerang's state of motion: e.g. Y, ;, V.

d) previous history.

In accordance with the methods of dimensional analysis (see e.g.
[Bridgman, 1931], [Birkhoff, 1950]) Fa'(or"rather its x-, y- and z-com-
ponents) can be written in the form:

> 2.2+ v Y% © . s

F_ = nua"VE(y, -———,7;—,751, ¢, Re, History, Shape) (5.4)

a w a
z z z

where all of the arguments of f are dimensionless. Re = aV/v is a
Reynolds number. Hisiory represents the influence of conditions
occurfing previously in the boomerang's flight. Shape denotes a set of
dlmenSLOnless parameters defining the boomerang'’ s shape (not size). The
medium may be considered as incompressible, hence no Mach number M
enters (for ordinary boomerangs M = 0.1). The factor V2 in (5.4) could
be replaced by (wza)z, if desired. fa can be wFitten in a similar form
with an additional factor a. It is History which raises most difficul-
ties, since it may depend on the complete motion of the boomerang from

its start, t=0, up to the present instant, t=t

On the basis of several assumptions the unknown function f in (5.4) may
be simplified. Since we shall work with averaged (smoothed) forces, an
enormous simplification can be made by averaging over one period of ¢,
and replacing History by a fictitious History in which the quantities

v oY ©

x
wa w’ my’ Re - (5.5)
z- Tz oz

¥,

are constant for all t j_tp. (The theoretical winglet model developed
in Part II is of this kind. The boomerang-simulating winglet structures
have an infinite number of identical arms, so that ¢ does not enter at
all.) This is a quasi-steady approach. The situation at t = tp, for the
purpose of calculating aerodynamic forces, is supposed to have been
constant for -w'<t_itp. The previous -part of the boomerang's flight

path is replaced by a straight line. This extremely simplified HZistory
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depends only on the present (t==tp) situation, and ceases to be an

independent set of variables in (5.4). We now obtain:
fa pa V ?(W U, x —X- Re, Shape) (5.6)
W, Yy :
where U, the advance ratio, is defined as:

v

w a
Z

U= _(5.7)
The dependence'on Re is not quite negligible (see Part II, Ch. VI): our
wind tunnel measurements indicated that there may be a slight influence.
The forces computed by the winglet model are independent of Re. For the
purpose of boomerang flight path calculations we shall assume that the
influence of Re may be neglected. Hence we write: |

¥ o= na?viE(y, U, X Y shape) (5.8)
a w, ' w,
1f wx/w -and wy/w are very small they will have no significant influ-
‘ence on F and T a’ and these parameters may be omitted from (5.8). This
assumptlon is not necessary, however, as is shown below. We p01nt out
that the wind tunnel measurements of Part II, Ch. VI on1y provide
experimental data for wx-wy-—O With this additional assumption the

aerodynamic forces and torques can be written as:

¥ o= wlaF (v, 1/v)

a o
> 2 3> (5.9)
T =uva T (¥,1/0)

a o'’ ,

or, alternatively, as:
ia = uwiaafl(Y,U)
(5.10)

T = wola’t, (¥,0) ‘

a Hw a 1yt

where F and T or F and T also depend on the boomerang's shape. The
dlmen31on1ess forces and torques F and T are used in Part II up to
§23, whereas F and T‘ are used in Part II from §23 on. During real
boomerang flights the linear velocity V generally varies strongly,
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whereas the relative variations in the rotational velocity w, general-
ly amount to less than 20%. It seems therefore convenient to use (5.10)
rather than (5.9): during a boomerang flight the dimensionless Fl and

%l behave roughly like ia and %a themselves.

Finally we reconsider the assumption of vanishing W and my. The

restriction'imposed by it can be removed. Instead of (5.10) we then

have:
> 243 “x Yy
F = w,a Fl(W, u, o, u)z)
6w (5.11)
= _ 252 X vy
Ta = ww_a Tl(?, U, mz, mz)

At first sight it appears that there are &4 independent dimensionless
variables. However, in boomerang flights w and Wy are not independent
of ¥ and U. According to (3.24): '

“x Yy ]
©y I3m2
z L(5.12)
wy Tx
- * 2
3mz -
which can be written as:
w
S 1.
z y
¢ L
L = 4k T (5.13)
w Ix
z
Uas
k=..___.
13 -

Here k is a dimensionless constant, of the order of 1 for ordinary
boomerangs in air. Thus at each point in (¥,U)-space wx/wz and my/wz
are given by (5.12), and, for a given boomerang, fl and %l are com-

pletely determined by ¥ and U only:

Fa - uwla® fT(W;U)
> z (5.14)
T o= pelad TH(Y,U)

a uwz 1?2
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tlle aslerisks 1naicate that (5.13) is taken into account. This can be

easily done in the winglet model, as shown in Part II, $23.

Due to precession the torques Tx and T cause the parts of a boomerang

. . . . *
to have a local velocity in z-direction: v =ywx-xmy. Hence:

*
v (X,}') = -k (%T

w a

- I +-§T]y) (5.15)

Usually.T]x and le are positive, so that the pPrecession has the ten-
dency to increase (resp. decrease) the angles of attack for the boom-
erang arms at positive (resp. negative) x and y. This leads to somewhat
higher values of Tlx and somewhat lower values of T]yvas compared with

the model including the assumption of vanishing mx and wy (v*==0).
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% The boomerang's angle of incidence Y.

Consider the third equétion of (4.8); it can be written as

. Fo T,
Y= -+
- mV I3mz
(6.1)
with F* =F cosY - F_ sin¥
. -z X

Tx tends to increase Y by means of gyroscopic precession, whereas F*
tends to decrease Y by accelerating the boomerang in a direction per-
pendicular to its velocity. (F,_ and 'I‘x generally are positive.) The
value of ¥ which results from these opposing effects is of profound
influence on the shape énd size of a boomerang's flight path. Since,Faz
and Tax generally are increasing functions of ¥, a greater ¥ results in
a stronger curvature of the flight path. Moreover, since the drag also
increases, the boomerang loses its speed more quickly. The spin, how-
ever, may increase (autorotation). During a reasonable boomerang flight
¥ does not deviate too far from zero (0 Y < 150) for most of the
trajectory, except toward the end of the flight, when a boomerang may

occasionally hover. The angle of incidence Y is stationary (@==0) if:

—_— = (6.2)

The value Wo of ¥ for which this equality holds (if it exists) depends
on U, V, 9 and y (remember that F, contains both gravitational and

aerodynamic components).

Fy
mv
T
X
1 13wz
|
/ l
I
A
/ |
k4
Vd . \yo
fig. 6.1. The stationary value of Y is Wo.
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If for v = vy ;
o

ENAEA WAL (6.3)
¥ \ mV Y\ I, w

37z
then Wo is a stable value of ¥. This is indicated in fig. 6.1. If the -
difference between the slopes of both lines is small, Wo may be ill-
conditioned, and slight deformations of the boomerang or slight varia-
tions in launching may give rise to substantial differences in the
flight path. It is curious that models in which the induced velocity

of the air is neglected may easily result in the impossibility of

satisfying condition (6.3).

If ¥ is assumed to be small, (6.2) can be formulated somewhat differ-

ently. According to (5.2) and (6.1): v ’
- _ c w o . . ‘g )
F, Faz cosY Fax sin¥ -mg cosd® cosY +mg sind sin¥ sin (6.4)

For small ¥, this can be approximated by:

F* = Faz - mg cosd (6.5)
Hence we have
F, = wat mg cosd
z 1z
25 ) (6.6)
T = uwTa~ T '
X z Ix

We define the dimensionless A by:

13 = Ama (6.7)
Then (6.2) can be written as:
Tlx _ A (6.8)
F. -Dhg cosd U )
Ix w234
Mo,
For 9= I (boomerang's plane vertical) this reduces to:
‘ T
Ix A .
F = T (6.9)
Ix
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L Rdy=vdt |

fig. 6.2. do _ % for stationary y.

This last formula (6.9) can also be obtained in g more direct way as
follows. We assume o= in, ym O (boomerang's" plane vertical, boomerang
flies in a horizontal direction). Let the local radius of curvature of
the trajectory be R. The centripetal force is provided by the "1ift"
F_=F  cosY-F sin¥, hence
al, " az ax 9
mV

'FaL_=——R— (6.10)

The precessional (angular) velocity ¢ is determined by:
| . Tax
(p:
I3wz

Here the boomerang is considered as a fast top. The component Ta also

(6.11)

contributes to the Precession, but this results in a change of 9 rather

than @. The angle of incidence ¥ is stationary if (see fig. 6.2):

- v '
Q= R (6.12)
(6.10), (6.11), (6.12) together yield:
T I,w
ax _ 3
TS v (6.13)
aL

which, for ¥ s~ 0, is equivalent to (6.9). As to the radius of the flight
path, R, we have, if ¥ =~ 0:

2
R=._’12._U_.=L“z._u_ (6.14)
ka Flz Ha Tlx

The very simple theoretical model for boomerang flights described by
Hess [1968] can be obtained from (4.8), (4.9), (4.10) by putting:

-
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129 =0, ¥=0 , ' (6.15)
and ‘
0 - . -—
2= Tax(.)wzv, Tay(.)mzv, Taz = 0, Fax(.)mzv, Fay = 0. (6.16)
The first assumption implies (see (6.2)):

F, Tx '

Lo ar Ym0 (6.17)

32z

F is considered as a force Qf constraint, automatically satisfying
(6.17). This could be justified by the assumption that'Faz increases
very much faster with ¥ than Tax does. However, both the winglet model
and the experiments described in Part II indicate that there is not
such a fundamental difference in the behaviour of these components as
functions of Y. A striking outcome of the simple model based on (6.15)
and (6.16) is that, as far as only aerodynamic forces are considered,
the size of a flight path is rodghly'independent of the initial values
of both w and V [Hess, 1968]. |
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§7  Simititude of boomerang flight paths.

In this section the conditions are discussed under which boomerang
flight paths are similar in shape, though possibly different in size.
Dimensional analysis (see e. g. [Brldgman,1931] [Birkhoff, 19501) is

the basis for this investigation.

We make the same assumptions here as in the beginning of &5 concerning
the boomerang, the medium and gravity. It is obvious that the shape of
flight paths is invariant under shifts in space (X,Y,Z) and time (t),
rotations about the vertlcal z-axis (¥), and reflections with respect
to vertical planes (X->-X or Y >-Y). Remember that the presence of

ground is ignored here.

We shall characterlze the size of a fllght path by R, which for an
approximately circular Path might be identified with the path radlus.
R is a functlon of (a) the initial conditions at the instant of

launching (t-—to).

9

to’xo’Yo’zo’00’wo’wo’q’o’\yo’vo’wxo’myo’wzo

(b) the properties of the boomerang:
p’kl,2,3’ Shape
where the dimensionless Aj =Ij/ma2, 3=1,2,3 characterize the boomer-
ang's massdistribution, (c) the properties of the air and of gravity:
V,g.

As mentioned above, to, Xo’ Yo’ Zo’ ¢5 do not influence R. Hence R can

be expressed in the form:

mXO wyo Vg U
R=a. f(\yO,UO’ wzo, 'a'z:, ¢°’8°,wo,Reo,;g', B‘, A]’2,3, Shape) (7.1)

Most of the symbols were also used in §5. Vv /ag can be considered as a
Froude number. We shall assume that the 1nf]uence of the Reynolds number

Re may be neglected (see §5).

With the foregoing assumptions,v(7.l) shows that flight paths are

similar provided that:
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w w
= A
1. ‘1’0, Uo’ <w > . (m , ¢o’ 00, wo constant (7.2)
z7o z70

which we call the condition of similar launching;

2. A ,2,3° Shape constant - (7.3)

which we call the condition of similar boomerangs;

V2
o

u
3. o’ ag constant (7.4)

1f these conditions are satisfied, then the flight path size is propor-

tional to the boomerang size:

R(:)a | (7.5).'

This is a fairly general result, also valid for rigid objects other -
than boomerangs. Perhaps the only unrealistic assumption concerns the
negligible influence of Re. For constant g and u it means that two
similar boomerangs of equal density p, similarly launched, traverse
similar flight paths with dimensions (R) propertional to the boomerangs'
sizes (a), provided the initial velocities Vo are taken proportional to

Va. (The Reynolds numbers, at constant v, then are proportional to

33/2.)

In the less general case of the model developed in 3, 84, £5, stronger
results can be derived. The equations of motion (4.8), (4.9), (4.10)
can be written in a dimensionless form as follows. Let.us introduce the

dimensionless quantities:

_ pag _ m I3 W
G = 2’0"_9A='—__29 )
uVo pa ' ma
we oV v L
thrra i R (7.6
o z :
-2 g oy _wE
pa - pa pa J

The first three of these are constants, the other six are variables.
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Vo can be taken as the boomerang's initial velocity. The equations of

motion can now be brought in the form:

~ N
4T .
dt KE'V Toz
-c—iz =1 V(—F cosY -F sin¥) +G(sind siny cos¥ +§os0 sin¥)
dt o ox- 0z :
a¥ 12 : 1o~
T ° 3 v (Fox sin¥ Foz cosY) + o uv Tox +
+ G% (-sind siny sin¥ + cosd cos¥)
de | .
a—_? = TE UV(-TOY Cosw -Tox Sln‘b)
do | ! . |
dt 2o sing ( Toy siny +T . cosy) -(7.7)
dv _ _ 1 2 R - sind cosw. _ do
dt ¢ cosy Foy xo UV taY Toy'+G cosY cosd 7
aX o~ . . . . .
ic = V[-cos¥(cosy cos® -siny sin@ cosd) -sin¥ sinyY sing]
aY  ~ : . . - .
I - V[-cos¥(cosy sin@+siny cos® cos9) +sin¥ cos® sind)
Sz = V[-cosY siny sind - sin¥ cosy]
dt s J

The dimensionless forces and torques F » F o F , T , T , T are
: oxX” oy’ "0z’ "ox’ "oy’ "oz

functions of ¥, U and Shape only. The equations of motion (7.7) yield
instead of (7.1): '

2 .
pa uVo . v
R = _Ll_ . f(‘l’o,Uo,ao,lbo, "EEE, A, Shcrpe) (7.8)

where Shape includes the parameter g. The condition p/p = constant is
absent here. Flight path size and boomerang size are now uncoupled.
Obviously this can be realistic only if a <<R, which amounts to u <<p.
(For wooden boomerangs in air: u/p = 0.002, a/R = 0.02.) For our boom-

erang model (7.8) shows that flight paths are similar provided that:

1. wo’Uo’ao’wo constant , (7.9)
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which is the condition of similar launching;

2. X, Shape constant . (7.10)
which is the condition of similar boomerangs;
uvg .
3. —_— constant (7.11)
pag
1f these conditions are satisfied, then
R(:) Pu—a (7.12)

This means that for a change a change in flight path size R by a factor
f, both pa/u and Vi/g must be changed by the same factor f. Sucha change
may be effected in various ways. The conditionms (7.9) and (7.10) must be

satisfied in all cases, and we shall assume this throughout the rest of

this section.

Let us first‘suppose that u and g are kept constant. Then Vo should be
changed by a factor /f and pa by a factor f. Table 7.1 shows several
possibilities. For each of the 5 rows a certain quantity is kept constant.
The columns indicate by what factors the quantities listed above should
be changed in order to obtain a change of a factor f in the flight path
dimensions. The symbols used are: R for flight path radius or size, T
for duration of flight, V for linear'velocity,u&for‘rotationalvelocity,
a for boomerang radius or size, p for boomerang's density, n for total
number of revolutions during a flight, m for boomerang‘s mass, E for

kinetic (or total) energy, Re for Reynolds number.

The fifth row of table 7.1 corresponds td the similarity conditionR/a=
constant, and the second row corresponds to the condition Re = constant. .
It is impossible to satisfy both conditions simultaneously, except for
identical boomerangs. Let us consider the third row as an example. Two
similar boomerangs having the same size (a), but differing in density
(p), and .-hence m, by a factor f can be made to traverse similar flight
paths, differing in size by the same factor f, if they are launched
similarly, but at velocities differing by a factor /f. (The change in

Re by a factor /f is assumed to have no influence, and the ratio R:a

(changed by a factor f) is supposed to be very large in both cases.)
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changed: \) p,m
kept
constant R T w, a R/a_ m E | Re
 E Pl M A2 ] | e
2) m, Re flele | | ]
3) a et | P! Aol A
) eomr/alf |0 [ B[S

table 7.1. Changes in several quantities required for a change in flight
path size by a factor f. Conditions (7.9) and (7.10) must be satisfied,

and p and g are constant. Five possibilities are listed.

Let us now consider some examples of the influence of changes in gravity
g or air density u. If g is lowered and p remains unchanged, then a
proportional decrease in Vi allows the same flight path to be traversed,
but at a slower space. If u is lowered by a factor f (for instance by
throwing boomerangs on mountain tops), the same boomerang traverses a

aimilar flight path which is a factor f larger, if the initial velocity

is increased by a factor Vf.

The above results, represented by (7.8) thfough (7.12), can also be

obtained in a more intuitive way. For similar flight paths tﬁe ratios
between aerodynamic, gravitational and inertial forces should be con-
stant. For similar boomerangs (7.10), similarly launched (7.9), these

three kinds of forces are characterized by:

uazvi (aerodynamic) A

pa3g (gravitational) , r(7.13)
3,2

pa Vo (inertial) '
R J

Hence follow the conditions:
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\
UVZ

pag

constant (aero:grav)

IR constant (aero:iner) L(7.14)

=5 constant (grav:iner)
\'f J

(These conditions are not independent, and one of them may be omitted.)

The first condition is (7.11), the.other two can be written as:

2
A
.) P2 .y 2
R(:) v and R(:) 2 (7.15)

We might consider pa/u as a measure for "aerodynamic path size'" and
Vi/g as a measure for '"gravitational path size". For the peculiar
character of the behaviour of boomerangs gravity, though of importance,
is not essential. If gravitétional effects are left out of conéideration,
condition (7.11) is not relevant, and for a particular boomerang the
flight path size is independent of Vo' This is a rough indiqation that
the same boomerang cannot be made to traverse flight paths of widely
different sizes by launching it faster or slower. Flight path size (in

air) is to a certain extent a property of the boomerang.

Finally a remark about the handedness of boomerangs. Throughout the
greater part of this work it is implicitly assumed that a boomerang is
right-handed, i.e. that it normally flies with a right-handed spin. Its
sense of rotation then corresponds to that of a right-handed screw the
main axis of which proceeds in the z-direction from the less convex to
the more convex side (or: from the pressure to the suction side) of the
boomeréng; It is obvious that if everything (including the direction of
the wind, if any) is reflected with respect to a vertical plane, the
result-is a boomerang with a left-handed spin traversing the mirror
image of the original flight path. If the original boomerang is thrown
with the right hand, the left-handed boomerang which is its mirror
image is preferably thrown with the left hand. Of course such a left-
handed boomerang can be correctly described as a "right-~handed" boomer-

ang having arms withupside—down profiles (ao negative), flying at negative .¥,
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or, alternatively, as a boomerang having arms with front-to-back pro-
files, flying at negative w, . But it seems more simple and less con-
fusing to describe instead of such a boomerang its right-handed mirror
image, which behaves in the normal way. The boomerangs used in

the field experiments described in Chapter II are of the left-handed
variety and were thrown with the left hand. The recorded flight paths

(see Chapter III) are reversed (mirrored) so as to obtain '"mormal

right-handed pictures.
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“8 The influence of wind.

If the influence of wind on the motion of boomerangs is to be taken
into account, this can be done in a rather simple way by modifying the
equations (4.8), (4.9) as follows. Suppose that the prevailing wind can
be described by the vector field W(X,Y,Z,t) with given components W_,
WY’ WZ. The components of this velocity with respect to'the.(x,y,z,)-
system, Wx, W ,_WZ, are obtained by the transformation (4.1). The veloc-

y
ity of the boomerang with respect to the air is now:

> o> .
v-—w-(vx-wx,—wy,vz-wz)-(—v cosW-Wx,-Wy,—V sinV Wz) (8.1)

fig. 8.1. The coordinate systems (x,y,z) and (x',y',z").

Since we work with smoothed equations of motion (see §3), it is necessary
to assume that V- W varies relatively little during a spin period. Hence
sudden fluctuations (tiﬁe séale :,.l sec.) in the wind velocity are

ruled out. Moreover, since the boomerang should be surrounded by a homo-
geneous flow, V - W should not vary much over distances comparable to the

boomerang's size.

We introduce a new coordinate system (x',y',z'), such that the boomer-
ang's velocity relative to the air has a vanishing component in y'-

direction. The z'-axis is identified with the z-axis and we demand:
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(8.2)

which corresponds to (3.1). Let the angle between the x- and x'-axes

be y, then

W

= y
Y arctg _V_-C—O—S-\P_"'W; (8-3)

The transformation from (x,y,z)-components to (x',y',2")-components and

vice versa proceeds according to the scheme:

X y z
x' +cosy +siny’ O (8.4)
y' -siny +cosy O
z' 0 0 1

where y is given by (8.3). The boomerang's velocity relative to the

air can be written as:

§-§= (—/(V cos¥ +Wx)2 +W}2<,0,-V sin¥ —Wx) ' (8.5)

where the comﬁonents are given in the (x',y',z')-system. In the equa-
tions of motion (4.8) and (4.9), as far as the aerodynamic forces and

torques are concerned, V, U, ¥ have to be replaced by the corresponding

values relative to the moving air:

N
V' = /?V cosY +W )Z-FWZ-F(V sin¥y +W )2 =
. X y z
Jo2 2 . ‘
=VV~ +W +2V(Wz sin¥ +Wx cosV) ¥
. v (8.6)
w a
W +V sin¥
¥' = arctg
/(V cos¥ +W )2 + 2
X y ~

Instead of the (x,y,z)- components of F (W U V) and T (W u,V), the
(x',y',2"')- components of F (W‘ u',v'") and T (W' u' V ) have to beused.
The components of these aerodynamlc forces andltorques have to be trans-—

formed back according to:
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= vy ' - VY Uy

Fax Fax'(w 2U', V') cosy Fay,(W ,U',V')siny

Fay = Fax,(W',U',V')sinY + Fay,(W',U',V')cosy (8.7)
= ' ' '

Faz Faz,(w ,Uu',v")

. 3 +
and corresponding equations for Ta.

For simulation of realistic wind conditions it is probably sufficient
to take 3 constant windspeed W, which is a function of height (2) only.
The dire.tion of the wind is horizontal, deviating from the X-direction

by a constant angle B. Thus one can take
> .
W = W(Z) . (cosB, sinB, o) (8.8)

where the components are given in the (X,Y,Z)~-system. In our actual

calculations we use (8.8) with

’_w(Z) = wo + w] .2 (8.9)

Here wo is the wind velocity at the level Z=0,. and Wl is the wind

velocity gradient.

Y
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Y9 The caleulation of flight paths.

The numerical calculation of boomerang flight paths is based on the
— smoothed - equations of motion (4.8), (4.9), (4.10). If the influence
of wind is to be taken into account, these equations are modified as

outlined in §8.

The - smoothed - forces and torques‘acting on a.boomerang_are described

by (5.1), (5.2) and (5.10) or (5.14), where the dimensionless aerodyna-
1x? Fly’ Flz’ Tlx’ le’
the winglet model developed in Part II, or by the experimental measure-

mic components F le must be provided either by
ments described in Part II, Chapter VI. In either case these components
as functions of ¥ and U are given in the form of tables containing the
values at the points (Wi,Uj) in (Y¥,U)-space. We take i=1...9, j=1...7,

and Wi and Uj are chosen as follows (see also Part II, %31):

il 1 2 3 4 s 6 7 8 9 A
v. | =57 0”57 10° 15" 20° 30° 45° 90°
5(9.1)
il o2 s 4 s 6 7
u; |0 .25 .50 .75 1.0 1.5 2.0 )

Such tables are listed at the end of Part II, 331 for five experimental
boomerangs. If, in the course of the flight path computations, the six
force components must be evaluated at a certain point in (¥,U)-space,

their respective values are obtained by a smooth two-dimensional inter-

polation by means of doubly cubic splines (see Part 11, £25).

The simultaneous numerical integration of the equations of motion is
carried out by a Runge-Kutta method. For given tolerance requirements
the algorithm determines the length of the integration steps, which may
vary in the course of the integration process. One step involves the
computation of the right-hand sides of (4.8), (4.9), (4.10) at 7 points
in time. In our actual calculations the boomerang's state of motion,
orientation and position are computed at 0.! seconds intervals. If an
accuracy of about 1 cm is desired in the boomerang's position through-

out its flight, the minimum number of 7 evaluations per integration
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interval of 0.1 sec. suffices during the greater part of most theoret-
ical flight paths.Finer integration steps occur when V or 9 is sﬁall or
¥ is large. This is closely connected with the 51ngu1ar1t1es discussed
in §4 It is clear that a very fine subdivision in integration steps
may be needed if one or more of the singularities (4.11) is closely
-approached This trouble will occur very seldom, except for the special
case in which a boomerang is launched exactly at 9=0 (i.e. with its

plane horizontal). If this occurs we modify (4.9) and simply put:
©=0, }=0_ if sind < .00 (9.2)

This crude procedure has the disadvantage of giving rise to discontinui-
ties in @ and ¥ between points which differ in the sign of sind - .001I.
No special precautions are taken againstvthe other singularities of
(4.11). On the other hand, in the sporadic cases where Y <-30° occurs
the computation is terminated, since we did not provide aerodynamic

data for such low values of ¥, and since in real flights this situation

is often accompanied by instability.

The computer program operates on two sets of data:

A: The data'charaéterizing the boomerang. The aerodynamic properties

are determined by the tables mentioned above, in which the dimensionless
forces are listed at the points (9.1) in (¥,U)-space. The boomerang's
mechanical properties are determined by the radius a, the mass m and

the moment of inertia I3.
B: The data chafacterizing the launching, i.e. the initial conditions.
Initial values are given for: f==wz/2n, v, ¥, 9, v, ¥, X, Y, Z.

C: The gravitational acceleration g and the air density p must be

given. We take:

9.80 m/s2

]
"

3 (9.3)
1.20 kg/m

=
n

If there is wind additional parameters must be provided. According to
(8.8) and (8.9) we must give values for: B, the angle betweep wind
direction and X-axis, Wo, the wind speed at level Z=0, and W], the
wind velocity gradient.
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The boomerang's state of motion, orientation and position are computed
at intervals of 0.1 sec. until the boomerang has descended below ground
level, Z=0. Values for the number of revolutions completed: n, and the

pathlength traversed: P are computed from the additional equations:

ﬁ- w /2%
. (9.4)
P

\'

The computing program was written in Algol and run on a Telefunken TR4

computer and on a CDC Cyber 74-16 computer.

An example of a theoretical boomerang flight is shown in table 9.1 and
figure 9.1. The boomerang considered is called 195.1. The number 195
characterizes a certain table of dimensionless aerodynamic components
computed by the winglet model on the basis of the characteristics
listed in table 32.1 of Part II. The influence of w and wy is neglected
according to assumption c of 5. The .1 after 195 serves to distinguish
this particular boomerang fromotherswith the same aerodynamic table

but with different a, m and I,. The 195.1 has:

3
a = .298 m.
m = .173 kg. (9.5)
13 = .00396 kgmz.

This boomerang simulates the experimental boomerang L1 (see £10). A

different choice for a, m, 13 would lead to boomerang 195.2 or 195.3

etc.

The initial conditions for the example flight are chosen as:

f 10 rev/sec.
= 25 m/s.

=O°

"
€
~
N
E]

[}

L(9.6)

N <K M € €6 © € <
]
|
N
o

© 371



There 1s no wind.

The 15 columns of table 9.1 list values for respectively:
I’t,P’n’f’V,U,w’a,(p’w’x,Y’Z,D'

~ Only the first and the last of these have not been explained. I is the
number of times the right-hand sides of (4.8), (4.9), (4.10) and (9.4)

were evaluated in the course of the last 0.1 sec. interval.

D = /kx-xo)2-+(Y-Yo)2 is the horizontal distance from the starting

point in metres.

Figure 9.1 shows three orthogonal projections of the computed flight
path. The boomerang is represented by a circular disk with radius a.
Its position is plotted at 0.1 sec. intervals, and its orientation can
be inferred from the shape and orientation of the elliptical projec-
tions. In the (X,Y)-projection (bird's-eye view) the X-direction is
leftward, the Y-direction downward. The big square surrounding this
projection has sidegiof 30 m. In the (X,Z)-projection (upper part of
fig. 9.1) the X-direction is leftward, the Z-direction upward, and in
the (Y,Z)-projection (at right) the Y-direction is downward, the Z-di-
rection rightward. The outer lines at the top and at the right of the

figure correspond to a height Z=10 m.

Finally an observation of theoretical significance. At first glance, it
might seem that the equations of motion could just as well be integrated
backward as forward in time. One could, for instance, take the conditions
at the instant of the boomerang's touching the ground as "initial condi-
tions” and, by integrating backwards in time, reduplicate the boomerang's
original flight path. However, when such a backward numerical integra-
tion is actually performed, the boomerang's motion turns out to be un-
stable: it diverges more and more from the original "forward'" motion.

In one case, in which we took the boomerang's angle of incidence V¥ as

an indicator, the difference between "forward" and "backward" values of
¥ increased exponentially, doubling every 0.27 seconds. On physical
grounds the "backward" instability of a boomerang's motion is plausible:
in the normal "forward" motion a boomerang continually loses energy,

hence in the "backward" motion its energy increases.
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Table 9.1. Example

of a computed flight path.
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fig. 9.1. Example of a computed flight path. Three orthogonal projec-

tions are plotted. The boomerang's position is shown at intervals of

0.1 sec.

374



CHAPTER II

FIELD EXPERIMENTS.

§10 The boomerangs.

Six boomerangs played a part in the experiments;'they are named respec-—

tively: L1, L4, L5, L6, F18, WU. With the exception of boomerang LS,

these were also used in the wind tunnel experiments described inPart II,
Chapter VI (see Part II, fig. 28.1). With four of these boomerangs:

L1, L4, L5, L6 (see fig. 10.1) flight paths have been photographically
recorded.

fig. 10.1. The left-handed boomerangs L1, L4, L5, L6. Each carries
batteries, light bulb and, except for LI, the "time pill". During the
experiments, batteries and "time pill" are covered by adhesive tape,

which in the photograph is removed from boomerang LS.
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These four boomerangs were equipped with batteries and light bulb. In
addition the boomerangs L4, L5 and L6 carried an electronic device,
called "time pill" (see §11), which switches the light on and off twice
a second and thus provides a time scale in the flight path photographs.
The batteries and the '"time pill" were mounted in the thickest parts of
the boomerangs, in suitably shaped holes where they are firmly held by
elastic electric contacts. During the experiments they were covered by
water—tight adhesive tape. The light bulb was inserted in a holder at
the trailing edge near the tip of boomerang arm nr. 1. (Arm nr. 1 "pre-
cedes" the centre of mass, arm nr. 2 "follows" it. See Part II, §20.)
Bulb holder, contacts and wiring were attached to the boomerang by

means of epoxy.

Except for the right-handed, commercially produced boomerang WU (see
Part II, §26), all boomerangs used were left—handed and handmade from
birch plywood. Their planforms were jig-sawed and they were filed in-
to shape and sanded. Holes were made for batteries, "time pill" and
bulb holder. The L4, L5, L6 and F18 were impregnated with low-viscosity
epoxy, and baked in an oven for some 20 minutes at about 130°C. This
procedure increases the strength of the boomerang's outer layers. Then
the bulb holder, the electric contacts and the wiring were mounted.
Finally the boomerangs were painted with glossy lacquer, white and red.
Arm nr. 2 of boomerang L1 has a narrower part which serves as a hand-
hold. Boomerangs L1 and L4 have flat undersides, boomerangs L5, L6 and
F18 have somewhat convex undersides. The constant cross section of
boomerang WU is discussed in Part II, §26. All boomerangs are without

intentional twist. Cross sections are shown in fig. 10.2.

Some dimensions and mechanical properties of the six boomerangs are
listed in table 10.1. More data can be found in table 18.1 for boomer-
ang L5 and in Part II, table 32.1 for the other boomerangs. A few
remarks concerning table 10.1: t, denotes the maximum thickness of a
boomerang without batteries. (The batteries' thickness is .0113 m.)

In the column under t/c the minimum and maximum thickness over chord
(= wing width) ratios are listed. Each boomerang's centre of mass was
determined by balancing, and its radius of gyration (rg) and moment

of inertia (13) by pendulum experiments. It should be noted that the
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fig. 10.2. Cross sections of arms nr. | (arms nr. 2 are similar) at

10 em distance from wing tips.

batteries (13 grams together) and the "time pill" (3 grams) contribute
substantially to each boomerang's mass m, but only slightly to its

moment of inertia 13. The light bulb weighs less than 1 gram.

fig. 10.3. Sides of circumscribed rectangle: dl’ d2, and angle included

between arms: .

In some of the field experiments the boomerangs L1 and L6 were weighted
with thin slices of lead fastened to the undersides of the arms near
the tips. Such ballast hardly influences the boomerang's aerodynamic
properties, but changes its mass (m) and, particularly, its moment of
inertia (13). With the weighted L6 a few flight paths were recorded in
which the batteries were replaced by shortened ones weighing 5 grams

less. The small shift in the position of the centre of mass due to the

377



attaching of ballast has been neglected in all computations. Boomerang

L4 has also been used while equipped with pieces of cotton-thread in

front of its leading edges (tr

Part II, §26). Boomerang LI

iments [Hess, 1968].

ip wire, see
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$11 The "time ptll”.

In this section an electronic device called the "time pill" is deséfibed.
It can be mounted in experimental boomerangs together with batteries
and a miniature light buylb. Its function is to switch the light on and
off at a known, constant frequency. In this way a built-in clock is
obtained, which allows one to deduce the boomerang's position as a

function of time from flight path photographs.

The "time pill" operates on two 1.5V batteries (Berec D23 or Pertrix
245) connected in series. Through it the lamp (without any indication
of manufacturer) is fed at a voltage of about 2.0V and a current of
195mA. The "time pill" was designed for a period of 0.50 sec. (0.4 sec.

on and 0.! sec. off).

w 1cm N

fig. 11.1. Two views of the "time pill".

The "time pill" consists of 16 discrete components soldered together
and cast in transparent epoxy (hardened at 70°C), which makes it shock-—
proof. It is shown in fig. 1l1.1. Three contacts emerge from the epoxy
and serve to electrically connect the device to batteries and light
bulb (see fig. 11.3). The "time pill" measures 3.15 cmx0.98 cm x 0.60

cm and weighs less than 3 grams.
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contact 2
.56 off: 3.1-2.6V
n: 2.8-2.3vV
.027 2.7
T.35V ¢ 1 — 1 1
39 IIIIIII 100 f - | 2.7 T
0n ) I 4
)
5 @ - 220 T
o 1.5
r : MJE v
- \J ——‘]_" —["_ 371  Jon: 195 mA
BCl46
ov 4
2 x BC146 -36 contact 3
I | on: 2.0V
Istabilizer multivibrator | amplifier
fig. 11.2. Circuit diagram. ‘ k= tantalum capacitor, IuF roughly.

[::]= carbon resistor, m = metal film resistor, numbers roughly indicate

i i Q. T, .. s 1 .
resistance 1n k 1,2,3,4 ° t?gpslstprs

switch

batteries

" light bulb

fig. 11.3. Connections between time pill, batteries and light bulb as

mounted in boomerangs. wwa = contact.

Three main parts can be distinguished in the "time pill": stabilizer,
multivibrator and amplifier (see fig. 11.2). The stabilizer supplies a
voltage of about 1.35V to the multivibrator. The 2.7 kQ in the ampli-
fier circuit serves to make the current through the light bulb less
dependent on the batteries' voltage. The capacitors and some of the

resistors were individually selected with great care, so that the
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desired period of 0.5 seconds was obtained with high precision. The
different temperature coefficients of metal film and carbon resistors
have been exploited to bfing the temperature coefficient of the period
down to about =120 ppm per °C. A disadvantage of stabilizing lamp
current rather than lamp voltage is that as the filament gradually
grows thinner due to evaporation, this process is accelerated rather
than slowed down. Another weakness of the present design is that the
period turns out to be rather sensitive to changes in the internal
resistance of the batteries, which varies from about 1.4 Q for two
fresh batteries in series to about 2.2 Q for older, used ones. The
period's internal resistance coefficient is about 1% per Q. The period's

dependence on the batteries' EMF has a coefficient of about }Z per V.

A duration test was done in whichvsome 50 consecutive "flights" were
simulated. The system was alternatély switched on for 15 seconds and
off for 45 seconds. During this test a pair of fresh batteries (EMF

~ 3.1V) was used up (EMF ™ 2.5-2.6V). The ambient air temperature was
11.8°C. The period was equal to .499 sec. within 0.1Z throughout this
test. During the field experiments the period of the "time pill" must

have been .499t'ggf sec. Actually, its accuracy is far higher than

required for our purpose.

More detailed information about the "time pill" and improved versions

of it may be obtained from H.D. Coster [1973].
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§12, Photography and field gecmetry.

The flight paths of an experimental boomerang were recorded by means

of photographic time exposures of the light traces made by the bulb
carried in the boomerang at night. As the light was carried excentrically
from the boomerang's centre of mass such a trace consists of consecutive
arcs of nearly cycloidal shape. The trace is continuous in the case

of boomerang L1, and interrupted twice a second by the "tipe pill" in

the cases of boomerangs L4, L5 and L6.

To obtain a three-dimensional record we used two equal cameras. These
were set up at a distance, called baseline, of about 1.4 m apart,
viewing parallel in a direction perpendicular to the baseline. In this
way pairs of photographs can be used as stereo pictures of boomerang
flight paths. The cameras were fixed to a stand consisting of a hollow
aluminium beam clamped horizontally on a collapsible, A-shaped, alumin-
ium ladder. The height of the cameras above ground level was about 1.4 m,

and the viewing direction was tilted about 5° upward from horizontal.

fig. 12.1. Uncertainty of boomerang's position in direction of viewing:
Av’ and perpendicular to direction of viewing: Ap. C = camera, b =base-
line, B = boomerang, D = distance boomerang from cameras, § = angular

uncertainty in photographs.

A disadvantage of this stereo setup is the poor resolution in the
viewing direction, as is indicated in fig. 12.1. The boomerang's dis-
tance from the cameras D is much greater than the baseline b. Call the
angular uncertainty in each photograph §, the uncertainty of the boom—
erang's position in the viewing direction L and perpendicular to the

viewing direction AP. Then we have:
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2 8,

D
L prn (12.1)

Hence, for b=1.4mand D=70 m, we have A /A ~ 100. For our flight
path photographs &6 =0.001 seems to be a reasonable estimate. This

corresponds to Ap &~ 0.05 m, A ~ 3.6 m at D=50 m, and to A '~ 0.07 m,
_A ~7.0m at D=70 m."

An alternative arrangement would be to set up two cameras far apart in
such a way that they view the flight path in perpendicular directions.
The uncertainty in all directions would then be about equal (A ). How-
ever, a main advantage of our arrangement is that the stereo plctures
provide an immediate three—dlmens1onal 1mpress1on, which can be com-
pared by eye with the impression from computed theoretical flight path

stereograms. Of course, both arrangements could have been combined by

adding a third camera to our setup, which would view in a perpendicular

direction. This would have required additional equipment and the assis-
tance of one more person. A greater baseline of, say, 6 m could have

been easily rea11sed however.

cameras lens aperture distance | baseline
used setting
2 x Werra 1 T £=50mm I :2.8 1:2.8 6 m 1.409 m

2 x Canon FTb TD £f=50mm 1 :1.8 1:2.8 © 1.385 m

1:1.8 20 m

table 12.1. The cameras.

In the course of the field experiments two different pairs of cameras
were used, see table 12.1. The chosen distance settings result in op-
timally sharp images from light sources at infinity. It turns out that,

at maximum aperture, these distance settings tend to be somewhat smaller

than the camera's distance scale indicates. The optimum settings were

determined experimentally. (Several small light bulbs were put at known
distances from the cameras. Pictures were taken with various distance -
settings. The developed negatives were viewed under a microscope. The

images showed as black, mostly elliptical, spots. The respective
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distance settings for which these spots had minimum dimensions were
considered to be the optimum settings for the respective known distan-—
ces. From these followed the settings for light sources at infinity.
The boomerangs mostly moved between 40 m and 80 m distance.) The amount

of image distortion was not investigated.

The film used in the field experiments was the very sensitive (over

1000 ASA) Kodak 2475 recording film, which afterwards waé developed in
a high-contrast developer. The light sources carried by boomerangs L4,
L5, L6 with "time pill" radiated roughly 3 lumen. The continuous source
carried by boomerang L1 varied from roughly 10 lumen to roughiy 3 lumen,
as the batteries were gradually exhausted. A light source of about 2
lumen would ﬁrobably be quite sufficient in expériﬁents like these. The

fixed light bulbs used as position markers at ground level were verymuch

fig. 12.2. A field light.

weaker. At the exposure time of about 10 seconds, their photographic
images are strong enough as long as they are clearly visible to the
nakéd eye from the camera position. Actually, in most of our photo-
graphs these lights are overexposed. Each field light consisted of a
light bulb of 2.5V, 0.1 (or 0.2)A, clamped on a 1.5V battery (R20), as
shown in fig. 12.2. By means of a piece of stiff iron wire this device

could be stood upright in the ground.

The experiments were éarried out on a piece of grass land 4 km north of
the town of Steenwijk (52°49'34"N, 6°6'10"E). The rectangular field

measures 55 mx 110 m-and is surrounded on all four sides by trees of
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about 8 m high. The long sides are in ESE-WNW direction. The cameras
were set up at the ESE short side, the viewing direction was WNW. From
the cameras' position the visible horizon was formed partly by the 8 m
high trees at 110 m distance and partly by 16 m high trees at 240 m
distance. The ground level seemed to be nearly horizontal, except for
the far western corner, which was slightly elevated. The field lights
were put in the positions indicated in fig. 12.3. We choose the carte-
sian coordinate system (X,Y,Z) in such a way that the origin is ét
ground level, halfway between the cameras, the Y-axis in the viéwing
direction, the Z-axis vertically upwards, and the X-axis towards SSW.

In the photographs, which'are reversed (reflected with respect to the
Y,Z-plane), this system is right-handed. The cameras have the coordi-
nates, in metres: (% 0.7, 0, 1.4). The (X,Y)-coordinates of the 10field
lights are respectively: (0, 35), (-15, 50), (0, 50), (15, 50),

(-15, 65), (0, 65), (15, 65), (-15, 80), (0, 80), (15, 80). An unlighted
marker was put at (0,0). These field markers were positioned by means
of a 50 m steel measuring tape and the light rays themselves. On one
occasion, when the marks put in the ground previously could not be

found in the dark, except for those at the positions (0, 0) and (0, 50),
the other nine positions were reproduced to within better than 5 cm, as

evidenced by the old marks rediscovered in the morning. The height of
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the field lights was about 20 cm above ground level, their deviations

from a horizontal plane may have amounted to some 10 cm.

fig. 12.4. Example of an experimental left-handed flight path stereogram

(14L28A/14R28A). A flight of boomerang Lé4. Bright star in upper right

corner is Wega.

An example of a recorded flight path is shown in fig. 12.4. The photo-
graphé are not yet reversed, so that the flight path is left-handed.
Here, boomerang L4 is launched at the approximate position

(0, 50, 1.8). The thick, knotty part of the light trace was made while
the boomerang was still held by the thrower's hand. Twice a second the
succession of cycloidal arcs is interrupted by the "time pill". The 10
field lights, slightly above ground level are clearly visible. In the
background a skyline originates from trees at two distinct distances,
farther back some clouds show and, at infinity, a multitude of stars.
The brightest of these, in the upper right corner, is a-Lyrae or Wega.

This exposure was made in the night of 30-8-1973 with the Canon cameras,
f:1.8.
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§13 The wind meters.

"How is the wind? If you can feel a breeze
on your face go home and bring out your kite.

Evéry day is not a boomerang day." [Hanson, 1974, p. 37]

The condition of the air during the experiments should be known, in
particular its density and’its state of motion. As to the density: we
assume a value of 1.20 kg/m3. We did not determine it experimentally.
The deviations from the assumed value may be about #37, which is not
very important. The incompleteness of our knowledge of the air's state
of motion is more serious. Only the interior of a very large hall could

have provided a windless environment.

We took care to select almost windless nights (which are very rare in
the Netherlands) for carrying out the field experiments. After some
pilot experiments, the actual experiments were done during five summer
nights in 1973. Naturally, there was always some wind, varying in space
and time. As it is impossible to completely determine the wind met by a
boomerang in the course of its flight, we must do with some rough esti-
mates. In fact, wind measurements were made at a single point by two
simple instruments: an anemometer and a vane, each positioned on top of
a fiber-glass fishing rod at a height of 4.75 m. In the course of the
experiments the local wind speed and direction were recorded as indi-

cated by these instruments. In fig. 12.3 their positionis indicated by W.

fig. 13.1. Vane fig. 13.2. Anemometer.
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The anemometer (fig. 13.2) is of a well known type: its main parts are
three hemispheral cups with a diameter of 7.9 cm. These were cut

from decorative plastic sheet (thickness 0.02 cm), in which an array of
cups was pressed, (at the time commercially available). They are attached
by thin brass rods to a hollow, aluminium, central cilinder. The dis- -
tance between the cups' centres and the cilinderfs central iine is

11.5 cm. The 1id which covers the cilinder has a hole through its
centre over which a piece of rubber is glued..Through the rubber and
the hole a steel sewing-needle points downward. The sharp point of the
needle is supported by a glass cup the size of half a bicycle bulb. The
needle point and the centres of the three cups are all in the same
plane, and the anemometer's centre of mass is underneath this plane.
The needle-point-on-glass—-bearing has very little friction. This cup
anemometer proved to be highly sensitive: it has been seen to spin
slowly but steadily in an air stream of 2 cm/s, made visible by ciga-
rette smoke. The anemometer was roughly calibrated by moving it at
various velocities through a long corridor. The passing of one cup (1/3
revolution) corresponds to a wind path of about 3/4 m, with an estimated
accuracy of $207Z. The instrument appears to be linear. During the field
experiments the passing of 10 cups was watched by eye at irregular

intervals and the corresponding times determined by a stopwatch.

The vane (fig. 13.1) is very simple. It consists of a rectangular alu-
minium sheet of 0.03 cm x 1] cm x 10 ecm, a balsa-wood stick and a brass
counterweight. The balsa stick is pierced by a needle, which rests in a
glass cup, just like with the anemometer. This device is extremely
sensitive: the vane has been seen moving even when the anemometer stood
still. Both instruments can be used in wind speeds up to 3 m/s. At

higher speeds they are blown off the fishing rods.

The wind measurements made during the field experiments are summarized
in table 13.1. For each of the five nights the following quantities are
listed: W, the average horizontal wind speed at Z = 4.75 m; B, the

angle between average wind vector and X-axis (as ékplained in fig. 13.3);
and AW, the maximum magnitude of the variations in the wind speed. The

values for W may contain a systematic error of * 207.
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s~250°/

fig. 13.3. Wind direction with respect to (X,Y,Z)-coordinate system

(after reflection). E.g;: for west wind, B ~ 250° according to (8.8).

W B AW
night (m/s) (m/s)

13-7-73 0.0 200° 0.1

16-7-73 0.1 140° 0.3

- 17-8-73 1.6 310° 0.5

19-8-73 0.1 220° 0.3

30-8-73 0.7 | 250° 0.4

table 13.1. Average wind velocity and maximum variations measured at

2=4.75 m.
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814 The launching of the boomerangs.

In our field experiments the boomerangs were thrbwn by hand. Although
this is the easiest way to launch boomerangs, it does not allow accurate
control of the initial conditions. Here a boomerang-throwing machine
would be ihdispensable (as was already remarked in [Hess, 1968]).
Ideally, such a machine should be capable of launching boomerangs at

all sorts of combinations of Vo’ w ¥y, 80, wo (subscripts o refer

>

to the instant of launching, t = o?? Th: instrument must either be able
to reproduée the selected initial conditions accurately, in which case
it should be calibrated once, or it must accurately measure and record
the initial conditions each time it launches a boomerang. No such
accurate instruments have been built as yet. The design of a good
boomerang-throwing machine is no simple matter. The instrument must
accelerate boomerangs to high speeds (for example, launching boomerang -
L5 at fo = 10 revs/s, Vo = 25 m/s requires an energy of 74J) and at the
same time be very delicate. After spending considerable attention to
the problems arising here, H.D. Coster and I came to the conclusion
that developing a boomerang-throwing machinewould take at least half a
year's time, and we decided to abandon the attempt to build one. In the
meantime a more simple boomerang 1auncher has been built by P. Musgrove
and his students at Reading (U.K.) [Jeffery, Grantham & Hersey, 1973],
[Musgrove, 1974]. Small launchers for indoor use have been made earlier
by Pfaundler [1905], [1906] and Buchnmer [1916], [1918].

If boomerangs are thrown by hand, the initial conditions must be deter-
mined by photographic means. Let us first have a look at the launching
method itself. Figures 14.1a,b and ¢ show the launching of boomerang

L1 by my left hand. The boomerang is gripped at the end of arm nr. 2
("following arm"). The pictures have been taken from-16mm film frag-
ments, exposed at a speed of 64 frames per second, and mirrored to pro-
duce a right-handed image. It appears that the boomerang, while it is
being accelerated to full speed in about 1/10 second, does not move
precisely in its own plane. This indicates an imperfect throwing
technique, which might lead to wobbling of the boomerang during the
first part of its flight. Indeed, it seems that some wobbling, after

the boomerang has left the hand, can be noticed in the pictures. The
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fig. 14.1. a,b,c. Three launchings of boomerang L1. Pictures taken: from
16 mm film exposed at 64 frames per second. Reversed to obtain right-
handed throws. Numbers denote time from instant of release in units of
1/64 sec. p, n and e denote resp. upperside, underside, edge of boom-
erang visible. Note the change in the orientation of the boomerang's
plane between the instants -1 and +2.
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flight path photographs in Chapter III, however, give no indication of
wobbling. It is true, in some of the photographs the first arc (or part
of it) is seen to lie in a plane significantly deviating from that of
the following arcs (e.g. fig. 19.6a), but this deviation is caused by
the launching motion shown in fig. 14.1, and occurs before the instant
of release. An analysis of 16mm film fragments, such as the one shown
in Part I, fig. 14.2, indicates that the boomerang is releaéed in ﬁhe
course of the first arc. At this moment the light carried hy the boom—
erang is about halfway this arc, see fig. 14.2. At the instant of re-
lease the boomerang's centre of mass is about 1.8 m above ground level.
From the flight path photographs it appears that, generally, the boom-
erangs are launched at angles of incidence W ~ 0. It seems to be d1f-

ficult to launch a boomerang at, say, ¥_ = lO°.

release

fig. 14.2. Instant of release of the boomerang_in flight p;th:photo—
graphs. Numbers denote time in units of 1/64 sec. from instant of re-

lease.

With what precxslon can the initial condltlons be determlned from our
flight paths photographs? The angular uncertalnty in the photographs
is one of the relevant factors, see §12 With very few exceptlons, ;he

boomerangs were always launched at Yo 50 m, Zo = 1.8 m, with esti-

‘mated errors: AYO 0.5 m, AZo = +8'; m. Xo was not recorded during the
experiments. Each of the quantities £ o’ V', ¥ o’ 6 > ©» w must be

o
determined either by inspection of a number of consecut1ve spin perlods

during which these quantities may vary, or from one arc only, whlch
does not allow a high precision either. The field lights at known .
positions provide length scales in the X- and Y-directions, and the
"time pill" provides a time scale (except for boomerang L1). Two

special cases can be distinguished. In the first case the boomerang is
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launched in a direction approximately perpendicular to the viewing

direction. Here fo’ Vo, wo’ Xo can be determined from the photographs.

In the second case the boomerang is launched in a direction almost

exactly parallel to the viewing direction. Here Wo, 60, @ Xo can be

determined. Table 14.1 lists the roughly estimated errors in the deter-

minable initial canditions for both special cases. The errors listed

2. parallel

1. perpendicular
Afo = 0.3 revs/s
AV = 1.5 m/s

o .

= 9°

Awo 2
AX =0.5m

o

AY = 5°
o

AY =5
o

= &0

A@o 5

AX "= 0.1 m.
o

o

table 14.1. Estimated errors in the initial conditions determined from

photographs, in two special cases. Assumed: Yo = 50%20.5 m.

for the second case should be much larger if the boomerang would be

launched in a direction somewhat deviating from the viewing direction.

For boomerang L1, which does not carry the "time pill", fo and V0 can-

not be determined. Uo (= Volwzoa) might still be estimated from the

shape of the cycloidal arcs, but this is not a precise method.

= o
wo 120

flight path

/
/

(xo,Yo)

fig. 14.3. Example to explain the angle ? - Bird's-eye view, boomerang

. — n° = o - - o
launched at (Xo’Yo) with Wo = 0", 3, 90", wo 120°.
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Finally, it may be convenient for the reader to be reminded of the
meaning of the angles #, ¢, Y. For this see fig. 4.1. 9 is the angle
between the boomerang's plane of rotation and the horizon. As to ©®
(anglebétweenhorizontal line in the boomerang's plane and X-direction),
it is useful to note that, if ¥ =0, & = {w, ¥ =‘0, the boomerang moves
in negative X-direction for @ = 0, in positive Y-direction for @ = -90°
and in positive X-direction for © = +180°. See fig. 14.3. If sinyp <0

the boomerang rises, if siny >0 the boomerang descends.

Generally the initial conditions were such that:

10 revs/s < £ < 12 revs/s

~~ (o]
20 m/s LV < 30 m/s
¥ ~0°
(o}
40° <9 < 90°
(<] o
3° gy 5 0
180° < @ < -90

" Z ™~ 1.8m.

The highest parts of the flight paths usually were at a greater dis-
tance from the cameras than the starting points. This helped to contain

the flight paths within the cameras' field of vision.

Knowledge of the initial conditioms of the phdtographed'boomerangflights
may servé to purposes. First, the influence of a particular parameter
@uch as 06) on a boomerang's flight can be experimentally determined.
Secondly, the experimental flights can be compared with computed theo-
retical flights having corresponding initial conditions. For both ob-
jectives, the accuracy of the initial conditions in our field experi-

ments is only barely sufficient.
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CHAPTER III

EXPERIMENTAL AND THEORETICAL FLIGHT PATHS

§15 Methods used.

Stereograms of boomerang flight paths make up the bulk of this chapter.
With regard to the recorded flight paths three distict levels of theo-
rization can be distinguished:

Level 1. Actual flight paths traversed by real boomerangs. These paths
are photographically recorded.

Level 2. Computed flight paths based on measured aerodynamic forces.
These paths are automatically plotted.

Level 3. Computed flight paths based on theoretical aerodynamic forces.

These paths are automatically plotted.

In the calculations of ‘level 2 flights, the aerodynamic forces and
tofques (le;Fly’Flz’Tlx’le’le) are taken from the results of the
wind tunnel experiments described in Part II, Ch. VI. The aerodynamic
forces and torques for the level 3 flights were computed by means of
the winglet model developed in Part II. In some cases these latter
forces contain a correction for the boomerang's pfecession (wx £ 0,

wy # 0, see §5); the resulting flight paths are said to be of level 3'.

boomerang level 1 level 2 | level 3 | level 3
L1 plain 0 101.1 195.1 250.1
weighted 0 101.2 195.2 251.2
L4 plain * | 104.1 237.1 252.1
with wire * _ _ _—
L5 plain L [— 245, 1 255.1
L6 plain * | 106.1 241.1 253.1
weighted 1 * 106.2 241.2 254.2
weighted 2 * 106.3 241.3 254.3
F18 108.1 242.1 256.1
WU S 109.1 239.1 257.1

Table 15.1. Listing of boomerangs and identification numbers of model
boomerangs. (0 = with light, * = with light and '"time pill").
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The level (1,2,3,3') designation is also applied to the (model) boom-

erangs themselves. In all cases the flight path calculations proceed as
outlined in §9.

The experimentel boomerangs and the identification numbers of the cor-
responding model boomerangs are listed in table 15.1. (More data can be
found in table 10.1.) The model boomerangs are labeled by four-digit
numbers. The first three digits of each number (e.g. 101 or 195) serve
as a label for a table of aerodynamic force components. For five level
2 boomerangs such tables are listed in Part II, §31 (experimental
forces). For level 3 boomerangs no tables are presented, but graphs

(for both level 2 and level 3) are shown in Part II, fig. 31.7 through
31.36. The input parameters for the winglet model are listed in Part II,
tabel 32;1, and, for boomerang 245, in Part III, table 18.1. The input
parameters for level 3' boomerangs are the same as for the corresponding
level 3 boomerangs, with the addition of the parameter k (see table 10.1).
The fourth digit of each identification number serves to distinguish

level 2 or level 3 boomerangs having the same aerodynamic table but dif-

fering in mass distribution.

Note that there are no level 2 flight paths for boomerang L5, which was
not used in the wind tunnel experiments. For boomerangs F18 and WU, in

which no light was mounted, level 1 flight paths could not be recorded.

The level 1 flight paths were produced and recorded as outlined in Ch.
11, particularly $§12. The photographs have been mirrored to obtain
right-handed flights. The pictures are in negative, containing black

lines on a white background, because they can be processed easier this

way.

The level 2 and level 3 flights were computed as outlined ini§9. Of
each flight path a pair of plots was made, simulating the view of the
pair of -cameras used in the field experiments. The direction of viewing
of the simulated cameras is in the positive Y-direction. Their positions
are given by: X=% 0.7m, Y=0Om, Z =1.4m. Their field of vision at Y = 50m
is given by: -1820./m<X<+18%0.7m, -2m < Z < 22m. The boomerang is

represented by a circle with radius a, shown in perspective. Its
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position and orientation are shown at intervals of 0.l sec., until it
reaches the ground (Z=0). The field lights are represented by small
circles with a radius of 10 cm, at the positions: (0,35,.2), (~15,50,.2),
(0,50,.2), (15,50,.2), (-15,65,.2), (0,65,.2), (15,65,.2), (-15,80,.2),
(0,80,.2), (15, 80 .2), in metres. A sawtooth skyline at Y=110 m, with
7.5m<Z<8.5m, is added in the stereograms. It simulates the treetops
visible in some of the level 1 flight path photographs. Its main func-

tion, however, is to aid the perception of depth in the computed stereo-
grams. '

For some of the calculated flight paths plots were made of stereograms
showing bird's-eye views. Here the simulated cameras have the positions:
X=*3m Y=50m, Z=80 m, and their direction of viewing is vertically
downwards, in the negative Z-direction. The rather long baseline (6 m)
allows an excellent perception of depth. With a few exceptions, the
field of vision at ground level (Z=0) is given by -25 m<X <25 m,

40 m<Y<90 m for boomerangs Ll and L4, and by: -35 m<X<35m, 30 m<Y
< 100 m for boomerangs L5 and L6. These bird's-eye stereograms should
not be confused with cilindrical projections. Vertical projections of

the boomerang flight paths on the plane Z=0 would look smaller and have
slightly different shapes.

Inmost of the computed flights the wind speed is zero. In the few cases
with wind, the wind speed was chosen as indicated in table 15.2. These
choices agree with the measured Qind épeeds as listed in table 13.1.
Tﬁe chosen values for the wind gradient (Wl) are rather arbitrary,
though not unreasonable. Anyway, the uncertainties in the actually

prevailing wind velocities are such that it is hardly possible to make

a better guess.

night ] 1Y L

17-8-'73 | 310° | 1.3 m/s | 0.6 m/s/10 m
30-8-'73 | 250° | 0.5 m/s | 0.2 m/s/10 m
other —_— 0 0

Table 15.2. Wind velocities assumed in the flight path computations.



Some 400 usable level 1 flight paths were recorded in the field experi-
ments. A provisional catalogue of about 4000 level 2 and level 3 flight
path stereograms was built up. Although this number may seem excessive,
it certainly is not: Table 15.1 lists 26 model boomerangs (level 2,3,3').
The initial conditions for each flight are characterized by 6 parameters
(fo, Vo, WO, 8.0 @ s wo), not counting the initial posi;ion and the

wind conditions. Typically, for one model boomerang flight paths were
computed with 3 values of wo, 7 values of ao,‘7 values of wo, 2 combi-
nations of fo and Vo’ and 1 value of Wo; this adds up to about 300
stereograms. For some boomerangs the computations were repeated with
wind. On the other hand, for several of the listed model boomerangs

hardly any flight paths were éomputed.

Which are the criteria for the selection of the flight paths presented
in this chapter? If the initial conditions of the level 1 flights were
known with higﬁ enough precision, one would only have to compute the
level 2 and level 3 flight paths with these initial conditions, and
afterwards make a representative selection. However, although the ini-
tial conditions can be partly inferred from the flight path photographs
(see §|4), the precision is not sufficient for this method. The alter-
native method adopted is to proceed by trial and error. In this respect
our ﬁethod is essentially the same as the one previously used in [Hess,
1968]. The selection process went as follows. For each level | stereo-
gram the catalogue was scanned, and if a similarly lobking level 2 or
level 3 flight path was found, the level 1 path was proviéionally
selected. The next step was to compute more flight paths by varying

the initial conditions. The best looking level 2 path was then selected.
As to level 3, either the best looking flight path was chosen, or thé
one with the same initial conditions as the selected level 2 path.
Finally, some 50, fairly diverse, level 1 flight paths were chosen for

this chapter, together with their theoretical counterparts.

Such a method, of course, contains the risk of working towards a
spurious agreement between experiment and theory. This risk can hardly
be avoided, due to a lack of sufficiently accurate knowledge of the

initial conditions of the level | flights. Indeed, in most of the

pPresented cases the agreement between theory and experiment may be
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flattered. This means that the presented evidence is primarily qualita-
tive. On the one hand, it shows that there are certain differences
between the outcomes of our theory and our experiments. On the other
hand, the computed flight paths often so strikingly resemble the photo-
graphed flight paths, that the existence of an actual agreement can

hardly be denied. A discussion of the results is given in.§22.

The following six sections present flight path pictures for respectively
the boomerangs L1, L4, L5, L6, FI18 and WU. Numbers between bréces, {1},
{2}, {3}, {3'} indicate the level of the flight paths. Numbers given
with the level 1 pictures are the lébels of the original 35 mm negatives.
Numbers given with the level 2 and level 3 pictures denote respecﬁively:
boomerang identification number, fo (rev/s), V° (m/s), Wo (degr.), 3,
(degr.), @, (degr.), wo (degr.), Xo (m), Yo (m), Zo (m). And, if there
is wind, B (degr.), WO (m/s), Wl (m/s/10m). In all computed flights:

Y, =0° Y, =50m 2 =1.8m.

For convenient viewing of the stereograms, use the stereo-viewer inserted

at the back cover.
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§16 Boomerang L1.

Level li boomerang pictures in fig. 10.1, physical properties in table
10.1. Without "time pill". Plain and weighted. This boomerang was used
earlier (October 1967) in field experiments publiéhed in [Hess, 1968].
Level 2: boomerang nr. 101.1 (plain) and 101;2 (weighted), see Part II,
tabel 31.1.

Level 3: boomerang nr. 195.1 (plain) and 195.2 (weighted), see Part II,
table 32.1. . _

Level 3': boomerang nr. 250.1 (blain) and (251.2 (weighted).

Leve1'2 and 1evei 3 graphs of aerodynamic force components: Part II,
f£ig. 31.7 through 31.12. ' |

List of flight path pictures for boomerang L1 plain:

negatives or
fig. 1level boomerang nr. fo Vo ¥ s 9w v X Y 2Z Bo Wo W

16.1a 1 7R6/L6A
b,e 2 101.1 10250 85-175-15 0501.8 0 0 O
c,f 3 195.1 10250 90 -175-15 0501.8 0 0 O
d,g 3' 250.1 10250 90 -175-15 0501.8 0 0 O
16.2a 1 11R30A/L30
b,e 2 101.1 11 280 90 -100 -15 7501.8 0 0 O
c,f 3 195.1 11280 90 -100-15 7501.8 0 0 O
d,g 3" 250.] 11 280 90 -100 -15 7 501.8 0 0 O
16.3a 1 7R31/L31A
" b,e 2 101.1 11270 70-100-20 6501.8 0 0 O
c,f 3 195.1 11270 75-100-20 6501.8 0 0 O
d,g 3' 250.1 11270 75-100-20 6501.8 0 0 O
16.4a 1  7R28/L28A
b,d 2 101.1 10240 65 -180-10 -3501.8 0 0 O
c 3 195.1 10240 70 -180 -10 -3 501.8 0 0 O
16.5a 1 7R26/L26A
b,d 2 101.1 10220 45 -185-25 -3 501.8 0 0 O
_ c 3 195.1 10220 55-185-25 -3501.8 0 0 O
16.6a 1 4R8/L7A
b,d 2 101.1 112270 70 -150 -10 -2501.8 0 0 O
c 3 195.1 11270 75-150-10 -2501.8 0 0 O
16.7a 1 4R9/L8A
b,d 2 101.] 11 280 80 -160 -15 -2501.8 0 0 O
c 3 195.1 11 280 85 -160-15 -2501.8 0 0 O
16.8a ] 11R33A/L33
b,d 2 101.1 12300 85-160-10 -5501.8 0 0 O
e 3 195.1 12300 90 -160 -10 -4 501.8 0 0 O
16.9a 1 7RI18/LI8A
b,d 2 101.1 10250 90 -100 -15 6501.8 0 0 O
c 3 195.1 11270 95-100-15 6501.8 0 0 O
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fig.

16.10a

List of flight

fig.

16.11a
b,e
c,f
d,g
16.12a
b,d
c
16.13a
b,d
¢
16.14a
b,d
c
16.15a
b,d
c
16.16a
b,d
c
16.17a
b,d

c
16.18a

b,d
c

Comment.

The flight paths of boomerang L1 (plain) typically have a diameter of

1
2
3

WN=WN=WN=WN=WN=WN—=WUN—=WLWWN —

level

level

negatives or

boomerang nr. fovVo Wo 00 © v

7R19/L19A
101.1
195.1

11 27 0
11 27 0

o (o}

X
o

Y
o

80 -100 -15 6 50
85 -100 -15 6 50

path pictures for boomerang L! weighted:

negatives or
boomerang nr. f

11R21A/L21
101.2
195.2
251.2
11R7A/L7
101.2
195.2
11R8A/LS
101.2
195.2
11R24A/L24
101.2
195.2
11R22A/L22
101.2
195.2

11R25A/L25

101.2
195.2

11R27A/L27

101.2
195.2
11R11A/L11
101.2
195.2

(o}

11
1
11

11
11

11
11

11
11

11
11

10
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11
11

11
11

v v
o o
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(ol e Ne]

[eNe)

[eNe) [N e

80V
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70 -155 -10
75 - 90 -10
80 - 90 -10
70 -100 -15
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80 -100 -20
85 -100 -20

NN OOl

O O

11
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o

o
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50
50

50
50

50
50

50
50

50
50

50
50

50
50

50
50

[eoNe)

[eN )

[eNe]

o o

[eNe]

o o o o

o o

about 22 m. The weighted boomerang traverses flight paths with a larger

diameter than similarly shaped paths of the plain boomerang have. Com-

pare, for instance, fig. 16.1 with fig. 16.14, and, at level 2, fig.

16.10 with fig. 16.12. In the latter case the largest horizontal dis-

tance from the launching point is 22.7 m for boomerang 101.1 (plain),

and 26.7 m for boomerang 101.2 (weighted). The difference is about 17%.
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In the cases presented in this section the agreement between the exper-
imental (level 1) paths and the computed flight paths of boomerangs
101.1 and 101.2 (level 2) is rather good. The agreement between the
experimental paths and those of boomerangs 195.1 (level 3) is not quite
so good, but still fair. Generally the initial conditions for boomerangs
195.1 and 195.2 were taken the same as for booﬁerangs 101.1 and 101.2,
except for 60, which mostly was taken 5° greater. As can be seen in
figures 16.1, 16.2 and 16.3, the flight paths of boomerang 195.1 are
more strongly curved than those of boomerang 101.1. This poing is dis-

cussed extensively in §22.

The few flight paths presented for bodmerangs 250.1 and 251.2 (level 3')
were computed with the same initial conditions as those for the corres—-
ponding level 3 flights. The agreement with experiment is not so good.

Other initial conditions did not lead to significantly better results.
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continued on next page.
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continued on next page.
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continued on next page.
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16.4. L1 plain. a: {1}, 7R28/L28A. b,d: {2}. c: {3}.
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16.13. L1 weighted. a: {1}, 11R8A/L8. b,d: {2}.

c: {3}.
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817 Boomerang L4.

Level 1: boomerang picture in fig. 10.1, physical properties in table

10.1. Plain and with "trip wire" in front of leading edges. Flight paths

with wire are not presented here, but in §36.

Level 2:
Level 3:
Level 3'

boomerang nr. 104.1 (plain), see Part II, table_3l.2.

boomerang nr. 237.1 (plain), see Part II, .table 32.1.
: boomerang nr. 252.1 (plain), no flight paths presented.

Level 2 and level 3 graphs of aeroéynamic force components: Part II,

fig. 31.13 through 31.18.

List of flight path pictures for

fig.

17.1a

17.4a
17.5a
b,d
17.6a
c,d
17.7a
b,d

17.8a
b,d

17.9a
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Comment. _

Boomerang L4 has a typical flight path diameter of about 25 m. This
boomerang does not perform as beautiful as boomerang LI does. On occa-
sion it was hardly possible for me to make it return completely. The
ease with which a good return flight could be accomplished varied from
night to night. This might be due.either..to.subtile differences in.my
throwing technique (fatigue), or to slight deformations of the boomer- -
ang (warp), or to both. When a "trip wire" was attached along the
leading edges of the boomerang arms, the performance of boomerang L&
was much imbroved; its flights then often resembled those of boomerang
Ll. Flight path photographs showing this effect are presented in §36.
We did not succeed in finding an acceptable level 3 boomerang corres-
ponding to boomerang L4 with wire. (Here acceptability includes the
assumption that only one or two of the input parameters may differ from

those of model boomerang 237.1.)

The agreement between the photographed flight paths and the computed
ones, both at level 2 and at level 3, is fair. Occasionally, however,
the initial.speed and spin in the computed flights were chosen greater
than the level 1 photographs would indicate. The efféct of this can be
seen in fig. 17.1 for level 3. In fig. 17.2a, for instance, one can
easily determine that f =~ 10.0 rev/s in the first second of the flight.
However, flight path calculations generally indicate a significant
decrease of the initial spin (and forward speed as well) immediately -
after the start. Hence, at the instant of launching the spin may have

been fo s 10.5 rev/s in this case.

Figure 17.8c,d (level 3) shows that a slight difference in the initial
conditions (here 80) may result in a substantial shift of the point of

touch-down. -

As to level 3' (no flight path presented), the differences from the
corresponding level 3 flights are more or less the same as in the case

of boomerang L1 plain.
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8§18 Boomerang LS.

Level 1: boomerang picture in fig. 10.1, physical properties in table
10.1, more dimensions given in table 18.1.

Leve1‘2:'absent.

Level 3: boomerahg_nr. 245.1, see table 18.1.

Level 3': boomerang nr. 255.1.

arm | e 1 e e fo e |dC | Cy Co Gy Cpy |Cpp dGp

1 |+92 296 50 55 |+3.0 +6.0 | .09 | -1.0 +1.8 -0.5 +0.8 | .04 .03
reversed profile [+1.0 +4.0|.10|-1.0 +2.4 -0.5 +0.8 | .08 .03

c

2 |-69° 297 51 57 |+1.0 +6.0|.09|-1.0 +1.8 -0.5 +0.8 | .04 .03
reversed profile |+3.0 +4.0|.10|-1.0 +2.4 -0.5 +0.8 | .08 .03

table 18.1. Boomerang nr. 245 belonging to:L5. a = 307. Lengths in mm,

angles in degrees. See Part II, §22 for explanation.

List of flight path pictures for boomerang LS.

”negatives or
fig. 1level boomerang nr. £ V_Y¥ 9 ©® Y X Y Z B W W
o o o o o o o oo o

18.1a 1 SR12A/L14A

oo

b,d 3 245.1 : 10250 70 -150 -10 0501.8 0 O

c 3'  255.1 10250 70 -150 -10 0501.8 0 O
18.2a 1 6R35/L34

b,d 3 245.1 10250 70 -180 -10 -10501.8 0 O

c 3'  255.1 10250 65 -180 -10 -1050 1.8 0 O
18.3a ] 6R36/L34 ,

b,d 3 245.1 10250 75 -180 -10°-10 50 1.8 0 O

e 3' 255.1 10250 70 -180 -10 -10501.8 0 O

18.4 1 6R9/L8

b,d 3 245.1 : 10250 75 -165 -5 0501.8 0 O

c 3'  255.1 10250 70 -165 - 5 0501.8 0 O
18.5a 1 SR14A/L16A : '

b,d 3 245.1 1025 0 55 -165 -5 0501.8 0 O

¢ 3' 255.1 10250 55 -165 - 5 0501.8 0 O
18.6a 1 S5SR17A/L19A :

b,d 3 245.1 10250 .75 -100 -20 14 501.8 0 O

c 3'  255.1 10250 75 -100 -20 14 501.8 0 O
18.7a 1 SR18A/L20A

b ] 6R2/L2

c,d 3 245.1 10250 70 -100 -10 14 501.8 0 O
18.8a 1 6R3/L3

b,d 3 245.1 10250 60-90-5 14501.8 0 O

c 3'  255.1 10250 60 -90-5 14501.8 0 O
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negative or

fig. level béomerang nr. fo v Wo 30 @ wo X, Y, Zo B W° W,

18.9a 1 5R27A/L29A

b,d 3 245.1 10 26 0 65 - 90 0O 14 50 1.8 0 0 O

c 3' 255.1 10 24 0 65 - 90 0O 14 50 1.8 0 0 0
18.10a 1 9R27A/L30A ' y S e

b,d 3 - 245.1 ' 10 2500 75 =175 -15 -12 50 1.8 310 1.3 .6

c 3' 255.1 10 250 75 -175 -15 -12-50 1.8:310'.1.3 .6
Comment.

It is important to note that the level 3' model boomerang 255.1 has a
status rather different from the level 3' boomerangs computed for the
boomerangs L1, L4, L6, F18 and WU, for which level 2 results are avail-
able. In the latter case, the principal aim of the computation of the
level 3 boomerangs was a good agreement with the measured aerodynamic
forces (level . 2) (see Part II, §31). The: level 3’ boomerangs, in this -
case, contain a correction for the contribution to the boomerang arms"-
angle of incidence due to precession (see §5). Therefore, level 3'
flight paths could be expected to be more realistic than the corres-
ponding level 3 paths. (Experimental forces corrected for precession
are not available.) In the case of boomerang L5, however, the principal
aim of the computation of the level 3 boomerang 245.1 was to obtain a
good agreement with level | flight-paths. Afterwards the corresponding
level 3' booﬁerang 255.1 was computed. Hence, in this case, there is no
ground for expecting the level 3' flight paths to be more realistic
than the level 3 paths (It might have been better if we had reversed
the procedure, and had first computed a level 3' boomerang aimed at
agreement with level 1 flight paths.) The value of a comparison between
level 3 paths and level 3' paths, in the present case, lies in showing
the effect of the "precession correction'" per se. As was explained in
§5, this correction generally increases the torque component TX apd
decreases the torque component Ty' This causes a decrease of the lying-
down (= slower decrease of 8) of a boomerang in its flight. This in
turn results in a somewhat less elevated flight path, and an increased
tendency for the path to continue curving counterclockwise. Such effects
can indeed be seen in the flight paths presented in this section. In

three cases 80 was taken 5° lower for boomerang 255.1 than for boomerang
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245.1 in order to obtain flights of roughly the same elevatiom.

Boomerang L5 is the biggest and the heaviest of all the bdomerangs used
in the field experiments. Its flight paths are larger and more elongated
than those of boomerangs L1 and L4. Often the farthest point is about

45 m distant frombthe launching ppint. This boomerang appears to return

best in a light breeze, see fig. 18.11.

N ~ N
Sae ~— Saa ™~
S SSaa
e TR ) S e ~ Smaa v-‘.‘%-‘.-:;_\::.
93 k¥
r
N iz, : .

fig. 18.11. 9R33A/L36A, boomerang LS5, {1}. Wind speed=~1.6m/s, B=310°.

About 20 usable flight paths of boomerang L5 were recorded under windy
conditions (17-8-1973). It is rather unfortunate that no satisfcatory
level 3 flights‘could be computed with the wind conditions chosen ac-
cording to tabel 15.1. This failure may be due to the large fluctuations

(~ .5m/s) in the actually prevailing wind.

‘The agreement between the level | and the level 3 paths presented here
is rather good. A reasonable agreement was difficult.to obtain for cases
in which boomer‘ang L5 was launched at 80° < 60 < 90°, -10° < L 0°.
Figure 18.10 (with wind) shows a substantial difference in the initial
conditions of the level 2 flight and the level 3 flight. In the photo-
graph ¢o s -5°, but at level 3 it was necessary to take wo & -15° in
order to obtain a flight path with at least a global likeness. The
effect of a change in @, can be_seen by'comparing fig. 18.1 with fig.
18.2, and the effect of a change in 80 by comparing fig. 18.2 with fig.
18.3 and fig. 18.4 with fig. 18.5. '
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8§19 Boomerang L6.

Level 1 : boomerang picture in fig. lO.], physical properties in table
10.1. Plain, weighted 1 and weighted 2. B

Level 2 : boomerang nr. 106.1 (plain), 106.2 (weighted 1) and 106.3
(weighted 2), see Part II, table 31.3. ‘ '

Level 3 : boomerang nr. 241.1 (plain), 241.2 (weighted 1) and 241.3
(weighted 2), see Part II, table 32.1.

Level 3': boomerang nr. 253.1 (plain), 254.2 (weighted 1) and 254.3
(weighted 2). No flight paths presented.

Level 2 and level 3 graphs of aerodynamic force components: Part II,
fig. 31.19 through 31.24. '

No flight paths are presented of the version "weighted 1".

In the case of boomerang L6 the level 2 flight paths poorly resemble

the photographed ones, due to inaccurate measurements of the aerodynamic
forces (see Part II, fig. 31.21). Rather surprisingly, it turns out that
the level 2 model boomerang 108.1, belonging to boomerang F18, traverses
flight paths very similar to those of boomerang L6. Therefore each flight
path photograph of boomerang L6 is accompanied by a computed flight path

of boomerang nr. 108.1, said to be of level 2* in this case.

List of flight paths of boomerang L6 plain.

negatives or

fig. level boomgrang nr. fo Vo ?o 00 ¢% wo Xo Yo Z° B Wo wl
19.1a 1 12R12/L19A
b,d 2* 108.1 10 25 0 65 -165 -10 - 5 50 1.8 0O 0 O
c 2 106.1 10 25 0 60 -165 -10 - 5 50 1.8 0O 0 O
19.2a 1 12R29/L36A ' :
- b,d 2* 108.1 10 25 0 70 -170 -10 -7 50 1.8 0O 0 O
c 3 241.1 10 25 0 70 -170 -10 -7 50 1.8 0 0 O
19.3a i 12R24/L31A
b,d 2* 108.1 10250 60 -180 -5 =12 50 1.8 0O 0 O
c 2 106.1 10 25 0 55 -180 - 5 =12 50 1.8 0 0 O
19.4a 1  -14R5A/L5SA
b,d 2* 108.1 10 25 0 80 -160 - 5 -11 50 1.8 250 .5 .2
c 3 241.1 10 25 0 80 -160 - 5 -11 50 1.8 250 .5 .2
19.5a 1 12R30/L37A t
b,d 2* 108.1 10 25 0 60 =110 -10 12 50 1.8 0O 0 O
c 2 106.1 10 25 0 55 =110 =10 12 50 1.8 0O 0 O
19.6a 1 12R19/L26A ,
b,d 2* 108.1 10 25 0 80 -100 -15 14 50 1.8 0O 0 O
c 2 106.1 10 25 0 - 75 =100 -15 14 50 1.8 0O 0 O
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negatives or

" fig. level boomerang nr. fo Vo Wo ”b wb wo Xo Yo Zo_ B W° Wl
19.7a 1 14R10A/L10A ,

b,d 2* 108.1 10250 70 -170 -15 -7 50 1.8 250 .5 .2

c 3 241.1 10250 70 -170 -15 -7 50 1.8 250 .5 .2
List of flight path pictures for boomerang L6 weighted 2.

negatives or
fig. lgvel boomerang nr. fo V° Wo ﬂg wo wo Xo Yo Zo B wo Wl

19.8a 1 13R20/L19 :

b,d 2*¥ 108.1 10250 65 -180 -15 -8 50 1.8 250 .5 .2
: c 3 241.3 10250 70 -180 -15 -8 50 1.8 250 .5 .2
19.9a 1 13R17/L16 ‘ 4

b,d 2* 108.] 10250 70 -165 =20 -7 50 1.8 250 .5 .2

c 3 241.3 10250 70 -165 =20 -7 50 1.8 250 .5 .2
19.10a 1 13R10/L9A

b,d 2* 108.1 10250 60 -110 -10 9 50 1.8 250 .5 .2

c 2 106.3 10250 50 -110 -10 9 50 1.8 250 .5 .2
19.11a 1 13R22/1.21

b,d 2* 108.1 10250 60 -110 -15 10 50 1.8 250 .5 .2

c 3 241.3 10250 65 -110-15 10 50 1.8 250 .5 .2
.Comment.

Boomerang L6 traverses elongated loops, which have an appearance quite
different from the more circular orbits traversed by the boomerangs LI
and L4. This indicates a strong tendency for the L6 to lie down..Proba-
bly the ratio Ty/Tx during the flights is greater for this boomerang
than for boomerangs like L1, L4 and L5. The agreement between the photo-
grapheﬂ flight paths and the computed flights of boomerang 108.1 is
striking. However, the level 2 (106.1 and 106.3) flights and the level
3 (241.1 and 241.3) flights agree only poorly with the field experi~-
ments. Evidently, the aerodynamic characteristics of boomerang 106 are
wrong, and so are those of boomerang 241. Moreover, even when I tried
to obtain a level 3 boomerang which was to reproduce the photographed
flight paths rather than the measured aerodynamic forces for boomerang
L6, I did not succeed. Relatively the best agreement between a level 1
path and a level 3 path is shown in fig. 19.11 for the weighted 2

version of boomerang L6.

In fig. 19.9a, level 1, the phenomenon of autorotation can be seen.

Boomerang L6 initially spins at about 10} rev/s, at the highest point
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of the flight the spin has decreased to 9 rev/s, and just before touch-
down it has increased to almost 11 rev/s. In the accompanying level 2%
flight of boomerang 108.1 the spin at the corresponding points has the

values 10.0, 8.5 and 9.3 rev/s respectively.
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§20 Boomerang F18.

Level | : boomerang picture in Part II, fig. 18.1, physical properties
~in table 10.1. No flight paths recorded.

Level 2 : boomerang nr. 108.1, see Part II, table 31.4.

Level 3 : boomerang nr. 242.1, see Part II, table 32.1.

Level 3': boomerang nr. 256.1. No flight paths presented.

Level 2 and level 3 graphs of aerodynamic force components: Part II,
fig. 31.25 through 31.30.

Photographic stereograms are not available for boomerang F18, its level
I paths have been witnessed by eye only. Fig. 20.1 offers a comparison
between one level 2 flight and one level 3 flight. Three orthogonal
projections are plotted, just like the example in fig. 9.1. The square
surrounding the vertical projection on  a horizontal plane has sides of
40 m, the maximum height -above ground ‘level contained within the lines

of the horizontal projections is 20 m.

The level 2 path resembles the actual flight paths of boomerang F18.
The level 3 path, however, is rather different, boomerang 242.1 does
not lie down fast enough. This causes its flight path to be less

elongated than it should be.

Eleven more flight paths of boomerang.108.1 are shown in the preced1ng

section on boomerang L6.
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fig. 20.1

boomerang F18

a: {2}.
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§21 Boomerang Wu.

Level | : boomerang picture in Part II, fig. 28.1, physical properties
in table 10.1. No flight paths recorded.

Level 2 : boomerang nr. 109.1, see Part II, table 31.5.

Levél 3 : boomerang nr. 239.1, see Pért II, table 32.1.

Level 3': boomerang nr. 257.1. No flight paths presented.

Level 2 and level 3 graphs of aerodynamic force components: Part II,
fig. 31.31 through 31.36.

The flighﬁs of the right-handed boomerang WU have been witnessed by eye
only. It usually traverses rather low flight paths with a diameter of
roughly 35 m. Fig. 21.1 presents orthogonal projections for one level 2
path and one level 3 path, in exactly the same way as fig. 20.1 does
for boomerang F18. Both flight paths reasonably resemble actual flight
paths of boomerang WU.
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§22  Discussion of the results

The preceding six sections with flight path stereograms offer a
considerable amount of experimental and theoretical data. Thesé
provide qualitative, rather than precise quantitative, evidence _
to judge the validity of our boomerang theory. We did not attempt.
to extract precise measurements of the level 1 flight paths from
the photographic stereograms. For this purpose photographs taken
in perpendicular directions would be better suited and a boomerang-
throwing machine would be indispensable. Lack of time and of
equipment prevented us from carrying out more sophisticated field
experiments. However, the experimental data presented in this
chapter together with theoretical results are quite sufficient to
reach some definite conclusions. In addition, the data allow the.

reader to form his or her own opinion.

At first glance there is a striking resemblance between. photographed
and computed flight paths. Such similarity can hardly be accidental.
One should bear in mind that the calculated flight paths result
from twice integrating the forces and “orques acting on a model
boomerang. After the first integratioﬁ the boomerang's speed and
spin are found, and after the second integration the boomerang's
position (see equations (4.8), (4.9), (4.10)). Even a small
deviation in the boomerang's angle of incidence ¥ during the motion
may cause significant deviations in the course of the flight path.
This difficulty was absent in the simple model of [Hess, 1968],
where the angle Y was by assumption kept equal to zero, but in

our present model - as in reality - the value of ¥ results from the
opposing effects of transverse acceleration and precession, accord-
ing to (6.1). A slight relative change in the rolling torque Tx
with respect to the transverse force F* may cause a substantial
shift in the resulting value of ¥, and hence in the curvature of

the flight path. (This effect is discussed further down in this
section.) It is therefore quite satisfactory that the dimensions of
* the computed flight paths correspond reasonably well to those of

the real boomerang flight paths.
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At second sight, one notices unmistakable differences between
corresponding flight paths of the levels 1,2 and 3 or 3'. In some
cases the differences are rather serious, particularly for boomerang
L6. The deviations between the photographed and the computed flights
may be due to one or more of the following three sources: v
_A) Uncertainties in the photographed flights. The unknown fluctuations
of the wind during a flight may be important. Even the average wind
‘velocity during a flight is not precisely known. The shape of the
boomerangs during free flight may differ somewhat from that during
the wind tunnel experiments. Moreover, the boomerangs may have
suffered sligﬁw deformations (warp) in the course of the field
experiments. |

B) Inadeqhacies of our model for boomerang dynamics, developed in
Chapter I. These might be due to the simplification of the equations:
of motion (see §3 and §5).

C) Errors in the aerodynamic forces acting on the model boomerangs.
This means at level 2: errors in the measured force components (which
are discussed in Part II, $§29), and at levels 3 and 3': shortcomings

of our winglet model (which are discussed in Part II, §33).

It is not easy to trace the deviations between flight paths of
different levels to partiéular sources‘of errors with certainty. For
instance, if one compares flight paths of level | with those of level
3', errors of types A, B and C all may be present simultaneously, and
the available data may be insufficient to separate the effects due to
each type of error. Let us nevertheless try to sét'a step in this
direction. Our attempt is based on the assumption that the qualitative
and quantitative agreement between the presented flight paths of
different levels - as far as present - is not spurious, but should

be considered as an indication of the (partial) validity of the

underlying theoretical models.

Errors of type A can be present in all level 1 flight paths. Wind
fluctuations are expected to cause random deviations, which probably
differ from one experimental night to the other. Deformatjons of

a boomerang from its expected shape may cause systematic deviations
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in its flights.

In the theoretical results, the errors of type B and type C cannot be
distinguished easily. While many of the computed flight paths look
fairly realistic, there are some which poorly agree with the experiments.
For instance, in the case of boomerang L1, the level 2 paths look
particularly good whereas in the case of boomerang L6 they look rather
bad. It is plausible that here the poor quality is due to errors of
type C. Indeed, probébly there are substantial errors in the measured
aerodynamic forces for boomefang L6 (see Part II, §33). Differences
between flight paths of level 2 and flight paths of level 3 must be

due to errors of type C. It is undeniable that these play a significant
part: the graphs in Part II, $31 show - partially systematic - differ-
ences between level 2 and .level 3 boomerangs, which, of course, give
rise to differences between the level 2 and level 3 flight paths. We

shall presently discuss this point in more detail.

Errors of type B would be recognisable as systematic deviations,
occurring for all boomerangs, between level I fligﬁts on the one side,
and level 2 and level 3(or 3') flights on the other side. We did not
find clear-cut indications or such deviations, although their presence
cannot Ee ruled out. For instance: generally the agreement between .
level 3 paths with experimental paths is least good for cases with

80° £'G° < 90°, -10° < wo :'Q » 1.e. when the boomerang is launched

in a nearly horizontal direction with its plane nearly vertical.

It seems improbable that this would. be caused by errors of type A.

It is surprising that level 3' flight paths invariably appear to be
less, instead of more, realistic than level 3 paths. This definitely
indicates a shortcoming of our aerodynamic model. For a discussion of
the differences between flight pafhs of level 3 and level 3', see
also §18. These differences are certainly not negligible, which
suggests that a "precession correction" (see §5) would make sense, at
least for a realistic aerodynamic boomerang model. In our winglet
model, however, the "precession correction" only seems to bring out

the model's shortcomings more clearly. Unfortunately, it is difficult
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to obtain a valid "precession correction" for level 2 boomerangs.
It would be interesting to sée how realistic "level 2'" flight

paths would look.

It seems likely that most of the deviations of . the calculated flights
from the photographed flights originate from errors in the aerodynamic
forces used in the flight path computations. The available evidence
strongly suggests that our theory of boomerang motion yields very good
results, provided the aerodynamic forces are given correct values as
functions of $,v and Y. However, it is difficult to assess the actual
accuracy of this theory per se, since this would require a much more
precise knowledge of the aerodynamic forces on boomerangs than is

available at present.

Let us now consider one case in more detail. It concerns the comparison
between a level 2 flight and a level 3 flight for boomerang LI, See
figure 16.2. Both model boomerangs, 101.1 and 195.1, are launched at
the same initial conditions: fo = 11 rev/s, Vo = 28 m/s ?o =0°,9 =
90°, wo = -15". The bird's-eye views of the flight paths (fig. 16.2 e for
101.1, resp. £ for 195.1) look rather different. Obviously, after
flying for about one second, the path of boomerang 195.1 is more
strongly curved'than the path of boomerang 101.1. In the first part of
the flight the 195.1 flies at a larger angle of incidence Y. This is
borne out by fig. 22.1, which shows. (¥,U)-diagrams for each of both
flights. A (¥,U)-diagram is a path in (¥,U)-space traversed by the
boomerang in the course of its flight. Both flights seart at the point
¥ =0, U=1.36. The (¥,U)-trajectory proceeds mainly from upper left
to lower right. In the case of boomerang 101.1 ¥ soon reaches a value
of 8.6°, whereas in the case of boomerang 195.1 ¥ increases to 13.4°.

A difference of this kind between boomerangs 101.1 and 195.1 occurs in
all flight paths, but in the case considered at present it is partic-
ularly strong. It can be traced to a difference in the aerodynamic

torque component Tx (see Part II, fig. 31.9). For ¥ > 107, Tlx is
significantly larger for boomerang 195 than for boomerang 101.
In fact it must be too large for boomerang 195, since most of the

flight paths computed for boomerang 101.1 look very realistic.
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0 5 10 15’ 20° 25’ 30 s’ 40° ¥
1 1 | | 1 1 1 |

b
fig. 22.1 (¥,U)-diagrams a) a flight by boomerang 101.1. b) corre-
sponding flight by boomerang 195.1. :
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a) for boomerangs 101. b) for boomerangs 195. Dashed lines indicate
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boomerang.
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than for boomerang 101.1. Although in the flights of fig. 16.2 the
condition: ¢ = { w, ¥ ~ 0 does not hold, and the boomerang's weight
enters in the problem, the above line of reasoning still has a
qualitative validity, and explains.much of the difference between the
level 2(101.1) and the level 3(195.1) flight path.

It may be of interest to note that the path of a boomerang in the
(¥,U)-plane, under the condition 8= } m, ¥ = 0, is determined by
both ¥ and U. It is easy to derive an equation, similar to (22.1),

which gives a condition for stationary U, i.e. for U = O:

3
-UT
1z =
Fip
where: >(22.2)
F1D = F]xpos ¥ + Flz sin Y ]

It can also be shown that, for FID > 0, U decreases as long as
-UTIz/FID < A. Contour maps for this function copld be drawn

similar to the ones shown in fig. 22.2, and similar dashed lines
would indicate the points in the (¥,U)-plane for which U = 0. If a
point of stability exists, it lies on the intersection of the dashed

lines corresponding to'the conditions (22.1) and (22.2) respectively
(¥ =0, U=0). ‘

level, t f v U ¥ D ® ']
boomerang | sec. | rev/s| m/s degr. | degr. | degr. degr.
all 0 11.0 |28.0 | 1.36 | 0.0 | 90.0 | -100.0| =-15.0
{2} ,101.1 1.0 10.6 |19.7 | 0.99 | 8.5 | 66.9 18.4 | -15.4
{3} ,195.1 | 1.0 | 10.6 |[18.0 | 0.94 |13.4 | 76.4 27.8| -18.7
{3'},250.1 1.0 10.9 |18.7 | 0.92 |13.1 79.2 30.4 | - 9.3

table 22.1 Some values for the theoretical flights of fig. 16.2
at t = 0 and after ! second.
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It was shown in §6 that, for a boomerang flying at 9 ~ 9¢°, ¥ ~ 0°

the angle of incidence ¥ can only be stationary, i.e. ¥ = 0, if

UurT
Ix
F

IL

where : > (22.1)

FlL = F]zcos Y - le sin ¥

and A = 13/ma2. This follows directly from (6.13). Figure 22.2 shows
contours of the function UT]x/FlL of ¥ and U in a part of the (¥,U)-
plane, for both boomerangs 101 and 195. Dashed lines with the values
.258 and .272 denote respectively the points where the function equals

A for the plain and for the weighted ‘version. of boomerang Ll. According
to §6, as long as UT /FIL > X (and FIL > 0), the boomerang has the
tendency to increase W and proceed to the right, "downhlll", until it
reaches a point where' (22.1). is satisfied (on a dashed line). Here we
suppose that we have a hypothetical case in which ¥ im ¥NoO
throughout this first stage of the flight. Fig. 22.2 clearly indicates
that, for high values of ¥ and high values of U, the function UT /FlL
is greater for boomerangs 195 than for boomerangs 101. For equal

values of U, higher than about 1.1, the dashed lines of the 195

deviate strongly from the corresponding lines of the 101. (At ¥ m 6°

the lines for both boomerangs agree). What is the effect of such a
deviation? Immediately after the start, at ¥ = 0° and U » |.3 say, both
boomerangs 101.1 and 195.1 proceed to the right in the (¥,U)-plane.

In the meantime U varies also, usually it decreases because the speed V
diminishes relatively more than the spin f (which may even increase by
autorotation if ¥ becomes large enough). Hence, generally, the initial
part of a boomerang's path in the (¥ »2U)-plane is toward increasing V¥
-and decreasing U. Fig. 22.2b shows that boomerang 195.1 cannot reach

its dashed line unless U < 1.1, whereas, according to fig. 22.2a,
boomerang 101.1 reaches its dashed line at ¥ < 10°, even if U is as high
as 1.4. Therefore it is plausible that ¥ reaches a higher value, and

hence the flight path gets a stronger curvature, for boomerang 195.1 .
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Tables 22.1, 22.2 and 22.3 list some values characterizing the

flight paths of the levels 2, 3 and 3' shown in fig. 16.2. Table

22.1 indicates that o changes by about 120° (level 2) or 130° (levels
3 and 3') in the first second of the flight. As ¢ = wy here, this
corresponds to wy/wz ~ .03. The boomerang's speed V decreases

very strongly directly after the start, the deceleration having a. -
value of about Ig. Table 22.2 shows that a main difference between
the flight path of the level 3 boomerang and that of the 1eve1 3'

boomerang concerns the maximum elevation (Z ). This is also evident
from fig. 16.2. '

metang | 2 |22 2B 5 Ll Ty
& m m m rev/s rev/s|m/s | degr.
{2} ,101.1}10.2 | 23.6 1.3]11.0 9.1 3.0 | 42.5 |0.17"

{3} ,195.1 9.5 | 21.2 3.2|11.0 9.3 |2.3 43.5 |0.13
{3'},250.1 6.3 | 20.6 4.5 11.1 9.4 3.3 | 32.0 |0.15

table 22.2. Some values for the theoretical flight pathsof fig. 16.2.
Z2 = maximum height, D2 = maximum horizontal distance. Dl = minimum
horizontal distance reached in coming back. f2 and f = maximum

resp. minimum spin. Vl = minimum speed, Wz = maximum angle of

incidence, Ul = minimum V/2nfa.

level, t P n D
boomerang sec. m. rev.| m.
{2} ,101.1 | 9.5 |91.6 | 91.1 |12.6

{3} ,195.1 9.2 192.6 | 89.9 [12.5
{3'},250.1 | 8.2 |92.6 | 82.0 |12.5

table 22.3. Some values for the theoretical flight path of fig. 16.2
at the instant of touch-down. t = duration of flight, P = total path

length, n = total number of revolutions, D = distance of landing point
from launching point.
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Finally, we note that in all computed flights the boomerangs' states

of motion are confined to the part of the (¥,U)-plane for which:

U sin ¥ 5'0.15 . (22.3)

This means that many of the values in the model boomerangs' aerodynamic
tables (such as 31.1 through 31.5) are not used. For the purpose of
flight path calculations, therefore, it is not necessary to compute,

or to determine experimentally, the values in the upper right parts
(high ¥, high U) Qf such tables.
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CHAPTER IV

TRENDS

§23 Methods used.

This chapter deals with changes in a boomerang's fllght path due to
certain variations in the initial conditions or in the boomerang's pro-
perties. Twelve sections each contain a theoretical investigation of
one effect, and one section (§36) deals with an experimental 1nvest1ga-

tion. As far as possible, the theoretical results are compared with ex-

perimental observations.

In §24 through §29 either the initial conditions are varied or the ex-
ternal conditions such as the presence of wind or the absence of gravivty.
Here, the model boomerang mostly used in the fllght path calculations
is level 2 boomerang 101.1, which belongs to boomerang L1 (see §16).'The
101.1 has proved to possess a quite realistic flying behaviour, and the
computed effects on its flight due to variations in certain conditions

probably agree very well with reality.

n §30 through §35 the boomerang's aerodynamic and mechanical parameters
are varied. Here we take level 3 boomerang lQS.Y‘(which also belongs to
boomerang L1, see §16) as a point of departure. Other model bbomerangs
can be derived from it by changing one or more parameters. Only in §32
boomerang 239.1 (belonging to boomerang WU) is taken as a reference. A
serious lacuna in our knowledge of boomerangs concerns the relation be-
tween the detailed shape of a boomerang's cross sections and the boom-
erang's aerodynamic characteristics. Therefore we cannot generally
answer questions like: If a certain boomerang does not perform satis-
factorily, how must its cross sections ﬁe modified in order to improve

its performance? Neither can we give designs for "optimum" boomerangs.

Many of the following sections contain tables in which values are listed
for several quantities characterizing the computed flight paths. These

quantities, and the units in which they are expressed, are respectivelys



t (sec) = duration of flight,

P (m) - = total path length,
n = total number of revblutions,
D (m) = distance of landing point from launchiﬁg point,
22 (m) = maximum elevation,
D2 (m) = maximum horizontal distance before returning,
Dl (m) - = minimum horizontal distance reached in coming back,
f2, fl (rgv/s) = resp. maximum and minimum spin,
v, (m/s) = maximum speed,
' Wz (degr) = maximum angle of incidence,
U, = minimum V/2nfa.

Most of the computed flight paths in this chapter are represented by
computer plots which show three orthogonal projections, constructed as

outlined in §9. Numbers with line segments indicate their lengths in

metres.

There are trends of a very interesting kind, which we did not investi-
gate. Suppose a certain boomerang, launched at certain initial condi-.
tions, returns perfectly. Now change one or more parameters, such as
the boomerang's mass, the wind velocity, or the angle ao. How must the
remaining initial conditions be modified in order to make the boomerang
still return perfectly? In the absence of wind, there are five indepen-
dent parameters determining the initial conditions: fo’ Vo’ Wo, 3,0 wo
(leaving Zo out of consideration). The point of touch-down, i.e. the
point (X,Y,0) at which the boomerang for the first time in its flight
reaches the ground Z =0, has two degrees of freedom. This suggests that
there is a three-dimensional subset of initial conditions EO; Vo, WO,
9> Vs for which a given boomerang with fixed properties returns per-
fectly. In the presence of wind wo becomes relevant too, and the subset
in this case will be four-dimensional. It would be interesting to in-
vestigate the shape of such "subsets of perfect return". One could start
with a simple case like the following one for a given boomerang. Uo and
Wo are kept constant, so that only three iﬁdependent variables remain:
v, 66, wo. The "subset of perfect return'" should be one-dimensional in

o
this case. It might consist of one or more curved line segments in
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(Vo,eb,wo)—space, or it might be empty for some boomerangs. For example,
for any value of 80, either we have one or perhaps more values of Vo

and wo with a perfect return, or the boomerang cannot return perfectly

at all.
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§24  The angle between boomerang's plane and horizon, 60.

The angle {% is among the launching parameters most easily varied by
the thrower. Figure 24.1 shows a typical example of the influence of Go
on the flight path's shape. (These pictures were published earlier in
[Hess, 1968, p. 135].) In fig. 24.1a boomerang tl is launched at 80ﬂ585°
and the flight path remains relatively low. In fig. 24.1b the same

boomerang is launched at 905365°; here the maximum elevation is signif-

icantly larger.

Figure 24.4 shows three level | stereograms of boomerang L6 weighted 2.
From top to bottom the angle 90 decreases (the angle wo may also have
been slighty varied). The smaller 80, the more the boomerang

flight path tends to curve outward near the end. Fig. 24.2 and 24.3
offer a comparison between two flights differing in 80, for boomerang

L1 plain at the levels 1, 2 and 3.

More systematic and quantitative data are provided by the 8 computed
flight paths of boomerang 101.1 (level 2) shown in fig. 24.5 a through

h. This boomerahg is launched at the following initial conditions:

fo = 10 rev/s, Vo = 25 m/s, wo = 0°,
- 3 = o = - o
ﬂo = variable, L 0°, wo 10°,
X =0my, Y =0m, Z =1.8m,
o o o
no wind.

The values chosen for Bo are respectively: 100°, 90°, 80°, 70°, 60°,
50°, 40°, 30°.

GB t P n D Z2 D2 D‘ f2 f] V] YZ 'U]

10017.1 {75.7 | 66.2 | 8.9 7.5]|24.5 6.2 |10.0 8.7 1.9 |82.6 .11
901 7.5175.7 {69.7 | 5.9 8.3|23.6 3.0/(10.0 8.8{2.5/|49.8].15
80(7.7176.9170.9| 7.7 | 9.9|22.4 1.7 |[10.0 8.7 {2.8[39.3].17
70| 7.4 {76.3 |67.1 |10.2|{12.3|20.8 7.6 |10.0 8.3 |1.8 59.2 | .11
60l 7.1 ]76.5 |63.0|16.9(14.8|19.0 13.5|10.0 7.9 (1.8 [33.4 |.11
50(6.9|78.1 [60.0 [25.8 ||17.1 | 17.7 15.6 | 10.1 7.4 | 4.3 |{16.3 | .27
40 || 4.4 | 55.2 {39.0 | 13.1 [[18.9 | 15.0 13.1 |10.2 7.4 | 5.1 |13.5 | .31
30| 4.4 |52.0{41.0| 8.1(20.1]14.2 8.1]10.2 7.8 (3.1 ]10.9 |.18

Table 24.1. Some values for the flights of fig. 24.5. Symbols explained in §23.
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fig. 24.1. Boomerang L1 plain (Oct. 1967). a: photograph Bll. b: photo-
graph Bl5. Difference in flight paths mainly due to difference in Bye
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Some numerical values for the 8 flights of fig. 24.5 are listed in table
24.1. Two obvious effects caused by varying ﬂ are : 12 the decrease
w1th‘8 of the maximum elevation (Zz ), and 22 the increase with 6

the maximum horizontal distance (D2) reached before returning. Both -
effects are shown in the graph fig. 14.6. The same effects can also be

observed in [Hess, 1968, P- 133] in flight paths computed on the basis
of a very simple boomerang model.

%"’2

22.
20
18
16
14
12

10

1 1 1 1 1 !

30° 40* 50° 60* 70° - 80° 90° ‘90 100°

fig. 24.6. Maximum height (ZZ) and maximum horizontal distance before

returning (D2) vs. Go for the flight paths of fig. 24.5.
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§25 The angle v,

Suppose that values have been selected for the angles Go and @, and
that the boomerang is to be launched at ¥ =0 (zero angle of incidence).
Then the orientation of the boomerang's plane is determined, and the
boomerang's initial velocity is parallel to this plane. By making a
choise for wo the direction of the velocity is completely

determined. The definition of the angle Y is such (see §4) that for

4> 0, ¥ = 0 the boomerang ascends if sin V < 0 and descends if

sin y > 0. In the cases presented in this section the boomerang is

launched in a horizontal or upward direction.

Figure 25.1 a through f shows 6 flight paths computed for boomerang

101.1 (level 2). The initial .conditions are chosen as follows:

- - n°
fo = 10 rev/s, Vo = 25 m/s, Wo 0]
= o = n° = :
§, = 80 > @ 0°, ¥, = variable
X =0m, Y =0m, Z =1.8m,
o o o
no wind.

The values chosen for ¥, are respectively: 0°, -10°, -20°, -30°, -40°,
[+

=-50".

The flight paths are plotted on the same scale as those of fig. 24.5.

v ll ¢ P n D z, D, D, £, g1 9] Y |y

0f7.1]73.9|65.3| 3.2[10.6 |22.4 2.6 |10.2 8.4 |1.6 |80.3 |.09
-1017.7176.9|70.9| 7.7 9.9 |22.4 1.7 |10.0 8.7]2.8 |39.3 .17
-20 (/8.8 | 80.8 [81.1 |15.01| 9.5|22.5 5.2|10.0 8.9 2.5 |65.5 .14
-30 (18.9 | 83.4 |81.2 |17.3][10.4 {23.1 9.8 |10.0 8.8 2.6 |49.9 |.15
-40 116.9 | 78.7 [ 61.6 | 19.1{[12.3 |24.3 16.7 |10.0 8.3 |2.5 |23.8 | .15
-50 [ 6.2 { 75.9 |53.3 [29.5 || 14.2 | 27.5 27.0 |10.0 7.7 |1.0 |24.2 | .06

N W s O

Table 25.1. Some values for the flights of fig. 25.1. Symbols explained
in §23. '

Table 25.1 lists some values for the flights of fig. 25.1. A main effect,
not indicated in table 25.1, is that for increasing values of —w , the
boomerang reaches its maximum elevation (ZZ) earlier. This is shown in

table 25.2. Thus: the more steeply upward a boomerang is launched, the

earlier it begins to descend.
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v, | 0° =-10°  -20° -30° -40° -50°

t(Z='22) I 2.4 2.3 1.9 1.4 1.3 1.3 seconds

Table 25.5. Time after which maximum height is reached for flights of
fig. 25.1. . _ -
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§26 Initial speed v, and initial spin fb.

Everyone who has thrown returning boomerangs may have noticed the curious
fact that the force with which a boomerang is launched has little in-
fluence on the diameter of the flight path. The main effect of a pro-
portional increase Qf Vo and fo is that the flight lasts longer, and
that the boomerang may traverse a second loop before reaching the
ground. If a boomerang is launched with too little speed and spin, it

drops to the ground too early for it to complete a return flight.

In this section data are given for 5 computed flights of boomerang 101.1
(level 2). This boomerang .is launched at the following initial condi-
tions:

£
o
8, = 80°, 9, = 0°, Vo = -10°,

X =0m, Y =0m, Z =1.8m,
o o o

no wind.

variable, VO = variable, Wo =0,

The initial values for fO and'Vo are chosen as follows:

“ase ré&?s ;7; Uo
1 8 20 1.34
2 10 25 1.34
3 12 30 1.34
4 12 20 0.89
5 8 30 2.00

The corresponding flight paths are shown in fig. 26.la through d, with
the exception of case 3, for which pictures are presented in fig. 24.5c

and fig. 25.1b. Some values for these five flights are listed in table
26.1.

D

fo VO t P n D zZ, 2 Dy f2 f1 Vl ¥, | Uy
8 20 || 6.0 57.0/50.5| 4.0 5.7(21.5 4.0| 9.0 7.8{2.6[58.4(.15
10 25 || 7.7]76.9({70.9| 7.7 || 9.9|22.4 1.7 |10.0 8.7{2.8(39.3/.17
12 30 (|10.2(104.0]|98.4(15.5{/13.9|22.3 2.7 (12.0 9.0(|2.6{30.9.15
12 20 || 5.2} 59.3(51.8|15.4 || 3.4|27.2 15.4(12.0 9.1{6.4(15.7|.37
8 30 || 7.1 | 85.4(58.9/18.2{{17.4(16.8 11.3| 9.3 7.3{2.4(17.2/.15

Table 26.1. Some values for the flights of fig. 26..1. Symbols explained in §23.
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From the evidence presented here obviously two conclusions can be drawn:
12 The boomerang's maximum distance before returning (DZ)’ or rather
its flight path curvature, is nearly independent of the initial velocity,

provided that Uo is constant; and 22 D 2 increases for decreasing values

of Uo. Hence if the boomerang is launched at a higher relative spin

(lower advance ratio Uo), the flight path diameter is larger.

The first phenomenon was to.be expected on the basis of the exposition
in §7 after (7.15). It is one of the most characteristic propertles of
boomerang flights. The constancy of a boomerang's flight path diameter

was also predicted by the simple model of [Hess, 1968] (see the computed
flight paths in [Hess, 1968, p. 132]). .

The second phenomenon can be explained on the basis of the exposition
in the second half of §22 (see fig. 22.2a). If U is increased, the
boomerang's angle of incidence ¥ increases to hlgher values, the aero-.
dynamic forces increase, and the flight path becomes more strongly
curved: D2 decreases. This effect was not predicted by the simple model
of [Hess, 1968], on the contrary. this model asserts that a boomerang's

flight path diameter is 1ndependent of V and f separately, and hence
independent of U . ' v
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§27 The angle of ineidence ¥, -

It seems to be difficult for a human boomerang thrower to vary at will
the initial angle of incidence Wo. Usually this angle is not much
different from zero, and probably |W°| < 10°" for most boomerang

launchings. However, the precise value Wo may depend on the throwing

technique used.

In this section 4 flight paths are presented, computed for boomerang

101.1 (level 2), with the initial conditions:

fo = 10 rev/s, Vo = 25 m/s, Wo = variable,
= 80° = ° = =]0°

Go = 80°, wb 180°, wo 10°,

Xo =0 m, Yo = 50 m, Zo =1.8m,

no wind.

The values chosen for ¥ are respectively: -5°, 0°, +5°, +]0°,
o

The resulting flight paths are shown in a compound bird's-eye view
stereogram, fig. 27.1, as continuous curves. (The simulated cameras'
position, and the field of view are the same as for the bird's-eye view
stereograms for boomerang 101.1 in §l6, see §]5.) Fig. 27.1 clearly

brings out the differences between the flight paths. First, the lower

Fig. 27.1. Compound bird's-eye view stereogram of 4 flight paths

differing in ?o.
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Wo the more the path curves inward near the end. Secondly, the higher
Wo, the stronger the initial curving of the path. Remember that the
initial orientation of the boomerang's plane, being determined by 6
and m » is the same in all four cases. The direction of the boomerangs
1n1tlal velocity, however, differs because of ‘differences in W . If
the flight paths were sllghtlyrotatedw1th respect to each other so
that their initial tangents would c01nc1de the differences in initial
flight path curvature would be more obv1ous. ‘The flight paths for

which W =.—5° and +10° respectlvely, are separately shown in fig. 27.2.

‘l’o t P n D Z2 D2 Dl f2 f1 Vl : ‘!’2 UI

=5 7l7 77.3170.3 16.7 |[10.1 [ 23.3- 1.3 10.0 8.6 (2.6 |45.7 .15
7.7 176.9 (70.9 {7.7 ]| 9.9 | 22.4 1.7 [10.0 8.7 |2.81(39.3].17
7.7 176.2171.5 8.9 (| 9.6 |21.9 3.6 {10.1 8.8 3.0135.6 .18
101[7.6 [74.6 [ 71.4 :9.6 9.0 21.8 5.5/10.3 8.9/3.2 32.3 }.19

Table 27.1. Some values for the flights discussed in this section.

Table 27.1 lists some values for the four computed flights. Additional
data for one second after the start are given in table 27.2. Obviously:

‘the higher W » the more V and the less f is slowed down. Significant

autorotatlon occurs for Wo = 10°,

v t ¥ U £ v
degr. | sec. | degr. rev/s | m/s.
all 0 var. 1.34 10.0 | 25.0
iy 1.0 9.7 | 1.00] 9.6 | 18.0
1.0 9.2 | 0.94| 9.9/ 17.4
1.0 8.7 0.89 10.1.] 16.9
10 1.0 8.1 0.85 10.3 | 16.4

Table 27.2. Some values for the flights at t

1 sec.

Figure 27.3 contains superimposed (¥,U)-diagrams for the first parts
of the four flights. The (¥,U)-tracks are seen to converge quickly to
¥Y=9°% U= 1.1. This can be explained on the basis of the exposition
given in the second half of §22. The phenomenon exhibited by fig. 27.3
sheds light on the question of the "backward" instability of a
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boomerang's motion, discussed at the end of §9. If a flight is
computed backward in time, starting from an instant at which ¥ ~9°,
U= 1.1, small numerical errors may soon result in substantial
deviations., Considered in reversed time, the curves in fig. 27.3

diverge very rapidly for U 2 1.3.

14

1 | | | ) 1 1
10t
-5* 10 Y
- + a—
U — w -m -!0
0 SO L8
12— -
0 - -
os p— -
1 1
-5* o’ s’ 10" ¥ > 15°

Fig. 27.3. Superimposed (¥,U)-diagrams for the first parts of the
four flights discussed in this section. Boomerang 101.1 is launched

at resp. Wo = =50, 0°, 5°, 10° and U = 1.34.
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§28 4 boomerang's final state of motion.

What happens when a boome:ang\is launched at great heighﬁ? Or,luﬁ}ﬁould
the flight path continue if no ground would be present to stop the boom-
erang's motion? Figures 28.1 and 28.2 show that the boomerang would

end up travelling along a hellcal path, clockw1se as seen from above,

and spiral down o6n and on.

The flight path shown here is computed for boomerang 101.1 (level 2)
with the 1n1t1a1 conditions:

fo = 10 rev/s, V o 25 m/s, ¥ 0 = 0,
Go = 80°, wo = 180°, wo = -10°,
X =0m, Y =45m, Z =1.8m,
o o o
no wind.

The computationsvare ended when the boomerang drops below the level

Z = -100 m, this happens 32.2 sec. after the start.

Figure 28.1 shows a bird's-eye stereogram (simulated cameras' positions
at (*3, 50, 80) m, field of view at Z = 0: -20 m<X<25m, 40 m<Y<

85 m), and fig. 28.2 presents two orthogonal projections in the X-and

Y-directions respectively. A (¥,U)-diagram for this flight is given in

fig. 28.3.

lll)‘l’.l % ° . 10L.1
80 -180 -10 80 -180 -10
0. 45 1.8 0. 45 1.8
cooco 00000
0°° o - ®e
° 0° °
o o o
° ) °
o o °
° o °
[\ o Q
o
o o °
° g ....... o
[\] o [
o
] o []
0 2 0
0 Lz 0
3
4 ' o
o I3

fig. 28.1. Bird's-eye view stereogram of boomerang flight ending 100 m
below ground level. ' ‘
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. ° 0
0 ) S 10 15 . 20 25 30 3s Y- 40

fig. 28.3. (Y,U)-diagram for the flight ending at Z = -100 m.

The state of ngmot;ion. finally reached by boomerang..101.1 is characterized

by:
£=8.5 rev/s, V=15.4 m/s, U=0.97, ¥ =8.6°, & =68°, ¢ =159°.
The helical path is”chvaravct‘erized by:
¢V= 20.2 m, AZ=26.3 m, At =4.6 sec.

where @ is the diameter of the p‘ath's vertical ﬁro_jection (which has a
circular sl-ia'p‘e), AZ. is‘the difference in height and At the time interval
between two points of the flight for which ¢ differs by 2w. Although

the numerical calculations indicate that the boomerang's state of motion
has not yet become quite constant at Z=-100 m, the values given above
probably are very close to the values charaéterizing the final state of

motion for boomerang 101.1. The same values were obtained for flight
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